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Abstract

We extend the Three-Pass Regression Filter (3PRF) in two key dimensions: (1) accommodating

weak factors and, (2) allowing for a correlation between the target variable and the predictors, even

after adjusting for common factors, driven by correlations in the idiosyncratic components of the

covariates and the prediction target. Our theoretical contribution is to establish the consistency of

3PRF under these flexible assumptions, showing that relevant factors can be consistently estimated

even when they are weak, albeit at slower rates. Stronger relevant factors improve 3PRF convergence

to the infeasible best forecast, while weaker relevant factors dampen it. Conversely, stronger irrelevant

factors hinder the rate of convergence, whereas weaker irrelevant factors enhance it. We compare

3PRF with Principal Component Regression (PCR), highlighting scenarios where 3PRF performs

better. Methodologically, we extend 3PRF by integrating a LASSO step to develop the 3PRF

LASSO estimator, which effectively captures the target’s dependency on the predictors’ idiosyncratic

components. We derive the rate at which the average prediction error from this step converges to

zero, accounting for generated regressor effects. Simulation results confirm that 3PRF performs

well under these broad assumptions, with the LASSO step delivering a substantial gain. In an

empirical application using the FRED-QD dataset, 3PRF LASSO delivers reliable forecasts of key

macroeconomic variables across multiple horizons.

Keywords: Weak Factors, Forecasting, high dimension, supervision, three pass regression filter,

LASSO.

JEL Classification: C18, C22, C53, C55, E27

1 Introduction

Factor models are ubiquitous in the econometric analysis of high-dimensional data. Starting from the

seminal work of Forni et al. [2000], Stock & Watson [2002], and Bai [2003], the utility of these models

has been increasingly acknowledged in high-dimensional multivariate analysis. Notably, they have found

extensive use in two key areas: high-dimensional covariance estimation and forecasting. This paper

delves into the latter domain.
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The literature on forecasting with factor models is extensive. Some prominent papers include Lud-

vigson & Ng [2016], who highlight their effectiveness in financial forecasting; Stock & Watson [2002] and

Stock & Watson [2003], who demonstrate their importance in macroeconomic prediction, among others.

The efficacy of these models is well-documented in the literature. Stock & Watson [2012] find that

forecasts derived from factor models outperform those generated by several shrinkage-based techniques.

Kim & Swanson [2018] corroborate these findings by demonstrating superior predictive performance of

factor-augmented models compared to a wide array of machine learning methods.

The framework for forecasting with factor models is well-established. Consider a scenario where we

have a large number of predictors organized in a vector, xt, and we aim to forecast a single target variable

h-periods ahead, yt+h. In this context, a standard factor-based forecasting model can be expressed as

follows:

yt+h = β0 + β′F t + ut+h, (1.1)

xt = ϕ0 +ΦF t + εt. (1.2)

The N -dimensional vector of covariates xt is decomposed into three latent components: an intercept term

ϕ0, a low-rank component ΦF t, and a vector of idiosyncratic components εt. The low-rank component

captures the systematic variation across the covariates and is driven by theK-dimensional vector of latent

factor(s) F t, where K remains fixed asymptotically. The N × K matrix Φ represents the temporally

invariant matrix of factor loadings. These loadings quantify the influence of factors on the observed

covariates. The vector of idiosyncratic components εt, as the name suggests, represents variation unique

to individual covariates, which is non-systematic and cannot be further decomposed into a lower-rank

structure.

Since these factors are latent, they must be estimated using an appropriate method. The benchmark

approach in the literature is the method of principal components, an unsupervised technique that derives

factors exclusively from the predictor matrixX. This method does not incorporate information about the

target variable y during factor estimation, which limits its predictive utility. To address this limitation,

Kelly & Pruitt [2015] introduced the Three-Pass Regression Filter (3PRF), a supervised framework that

leverages additional information from ‘proxy’ variables, denoted as Z. These proxies, either pre-specified

or constructed based on y, enable the estimation of factor(s) relevant to y, which often constitute a strict

subset of the factors driving X. By aligning factor estimation with the goal of forecasting the target

variable, 3PRF improves forecasting efficiency compared to unsupervised methods.

In formulating their theoretical framework, Kelly & Pruitt [2015] rely on foundational assumptions

inspired by earlier works such as Stock & Watson [2002] and Bai & Ng [2006]. These assumptions

facilitate the identification of latent factor(s) and provide the basis for deriving the properties of their
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estimator. In this study, we revisit these assumptions and relax two critical ones, leveraging recent

advancements in literature. Below, we outline these assumptions and discuss the rationale for their

relaxation.

The first assumption pertains to the proportion of variation in the predictors that is explained by

the factor(s), a concept commonly referred to as the “strength” of the factor(s). Like most earlier

studies in the literature, Kelly & Pruitt [2015] assume that all factors driving the predictors are strong.

Specifically, with reference to Equation 1.2, this assumption is formalized as Φ′Φ
N converging to a non-zero

limit, indicating that the factors explain a substantial share of the variance in the predictors. However,

evidence from studies such as Bailey et al. [2021] and Freyaldenhoven [2022] indicates that this strong

factor(s) assumption often fails in practice. Factors may instead be weak, i.e., Φ′Φ
Nψ

, for some ψ < 1, may

converge to a non-zero limit. Bailey et al. [2021] provide a framework for estimating factor strength and

apply their method to key macroeconomic and financial datasets, demonstrating that the strong factor

assumption is frequently violated. Weakness in factor(s) can primarily be attributed to two reasons, or

a combination thereof: (i) when factor(s) influence only a subset of predictors, commonly referred to as

local factors (see Freyaldenhoven [2022]), or (ii) when idiosyncratic variances are large (see Bai & Ng

[2023] and references therein). In such scenarios, the theoretical properties of factor-based forecasting

methods warrant closer examination.

Recent studies on the principal components method for factor estimation have sought to relax the

strong factor assumption; see Bai & Ng [2023] and Freyaldenhoven [2022]. These papers primarily

examine the implications of a weak factor structure on estimating the factor(s) using the principal

components method. In contrast, our focus is on evaluating the effect of weak factor(s) on forecasting.

We extend the theory of 3PRF to accommodate settings where predictors follow a weak factor structure.

We allow target-relevant factors to have a different strength compared to target-irrelevant factors. Our

theoretical results provide bounds on how weak the target-relevant factors can be. When developing the

asymptotic theory under the assumption of a strong factor structure, it is sufficient for the sample size

(T ) and the number of predictors (N) to approach infinity, with no restriction on their relative growth

rates. However, in the weak factor setting, the derivation of the theoretical properties of 3PRF reveals

that T must grow at a sufficiently fast rate to ensure consistency, a requirement absent under the strong

factor assumption. This condition is formalized in Assumption 6 of the paper. Furthermore, we show

that if irrelevant factors are too strong relative to relevant factors, the convergence rate of 3PRF is

severely reduced, and beyond a specific limit, we encounter inconsistency.

We establish that 3PRF converges to the infeasible best forecast at a faster rate than Principal

Component Regression (PCR) when the relevant factor(s) are stronger than the irrelevant ones. This

finding provides a rationale for 3PRF’s strong performance in many empirical settings, as this assumption

is likely to hold for a wide range of economic target variables. Conversely, when all irrelevant factor(s) are
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stronger than the relevant ones, 3PRF converges to the infeasible best forecast at a slower rate compared

to PCR. In cases where some irrelevant factor(s) are weaker and others stronger than the relevant ones,

this comparison is complicated.

While Kelly & Pruitt [2015] demonstrate the consistency and establish convergence rates of 3PRF,

they do not theoretically establish any superiority over PCR. Our contribution fills this gap by explicitly

identifying cases where 3PRF has a clear advantage in terms of faster convergence rates.

The second assumption in Kelly & Pruitt [2015], which we address in this paper, pertains to the

orthogonality of the idiosyncratic components to the target variable. In Equation 1.1, the forecast

β0 + β′F t is optimal only if E(ut+h | εt) = 0, as assumed by Kelly & Pruitt [2015]. However, in high-

dimensional settings, it is unlikely that all idiosyncratic components (εi | i ∈ {1, . . . , N}) are uncorrelated

with the target variable. If even a small number of these components are correlated with the target, the

forecast constructed using Equation 1.1 becomes suboptimal, as it fails to fully exploit the predictive

information contained in X.

Allowing idiosyncratic components to correlate with the target variable reflects the reality of many

economic forecasting scenarios, particularly when dealing with a large number of predictors. Fan et al.

[2023b] provide several examples demonstrating this. Beyhum & Striaukas [2024] introduce a framework

for testing a dense model specification, specifically factor regression, against a hybrid model that combines

dense and sparse components; a factor model augmented with sparse idiosyncratic components. They

apply this test to various macroeconomic and financial datasets, frequently rejecting the null hypothesis.

They note, “This suggests the presence of sparsity — alongside a dense component — in widely studied

economic applications.” To further motivate this, consider the empirical application in Kelly & Pruitt

[2015], wherein they examine the forecastability of key macroeconomic aggregates using a comprehensive

set of predictors - specifically, 108 macroeconomic variables compiled by Stock & Watson [2012]. The

predictors are assumed to follow an approximate factor structure, as introduced by Chamberlain &

Rothschild [1983], accommodating weak cross-sectional and temporal dependence in the idiosyncratic

components. Although Kelly & Pruitt [2015] do not explicitly assert that the chosen target variables

are fundamentally different from other predictors, their methodology implicitly relies on the assumption

that the idiosyncratic components of the target variables are martingale difference sequences and are

uncorrelated with the idiosyncratic components of other predictors.1 This implies a strict factor structure

for the target variables rather than an approximate one, which is restrictive.

Few studies in the literature have sought to address this limitation, namely, the assumption that

idiosyncratic components are orthogonal to the target variable—by leveraging the predictive content

of these components. Notable examples include Kneip & Sarda [2011], Fan et al. [2020] and Fan et al.

[2023b]. These works augment the principal components-based factor forecasting model by incorporating

1They assume that yt+1 − E(yt+1|F t) is serially uncorrelated and independent of all idiosyncratic components.
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a small subset of idiosyncratic elements relevant to the target as additional predictors. This is accom-

plished using regularizedM -estimation methods, which capture residual dependencies between the target

and predictors that are not explained by common factors and are thus attributed to the idiosyncratic

components of the predictors. In doing so, these studies aim to bridge two distinct methodologies for

high-dimensional estimation: sparse modeling and dense, factor-based modeling.

Motivated by this line of work, our paper extends the 3PRF framework by introducing an additional

step to incorporate the predictive content of idiosyncratic components. Specifically, we employ the Least

Absolute Shrinkage and Selection Operator (LASSO; Tibshirani [1996]) to select relevant idiosyncratic

components as additional predictors. We refer to this augmented estimator as 3PRF LASSO. Our

empirical analysis demonstrates that idiosyncratic components can exhibit substantial predictive power

for certain macroeconomic variables. This is evidenced by the enhanced performance of the 3PRF LASSO

method compared to the original 3PRF approach, underscoring the value of integrating sparse and dense

components in economic forecasting models.

Augmenting a principal components based factor model to account for ignored idiosyncratic de-

pendence is relatively straightforward, as the unsupervised nature of factor estimation via the principal

components method ensures that the factor estimation process remains unaffected by the data-generating

process of the target y. However, in the 3PRF framework, allowing idiosyncratic elements to possess

predictive content for the target y, and thus for its proxies Z, introduces a form of ‘corruption’ in the

supervision process, as clarified in Section 2.2 The principal components method is unaffected by the

correlation between idiosyncratic components and the target, as neither the target nor its proxies are

used during factor estimation. In contrast, within the 3PRF framework, where proxies are utilized for

supervision, such correlations can potentially undermine the benefits of this supervised approach. The

3PRF methodology is designed to extract relevant factor loadings from the proxies to estimate factors

pertinent to the target. However, when idiosyncratic dependence is present, this extraction process loses

precision, capturing information unrelated to the factors but stemming from the correlation between the

proxies and the idiosyncratic components. To address this issue, we outline assumptions in Section 3

that prevent this ‘corruption’ from adversely impacting the asymptotic convergence rates, ensuring that

3PRF retains its robustness even in the presence of idiosyncratic dependence.

In addition to relaxing these two assumptions within the 3PRF framework, it is noteworthy that,

unlike the literature on PCR, which addresses the challenges posed by weak factors and idiosyncratic

dependence independently without considering their combined impact, we extend the theoretical frame-

work of 3PRF to account for both phenomena simultaneously. Specifically, we derive the asymptotic rate

at which the regularization parameter in the proposed Stage 2 of 3PRF LASSO must approach zero, with

this rate determined by the strength of the factors. Crucially, this rate governs the convergence rate of

2Z mimics the data generating process (DGP) of y in that it depends on the same set of factors and idiosyncratic
components as y. This is clarified in Assumptions 1 and 9.
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the LASSO step, as established in the LASSO literature. This analysis provides a deeper understanding

of the interplay between the estimation of weak factors and the handling of idiosyncratic dependence,

and how these interactions influence the overall performance of the model.

Our simulation results indicate that, under these general assumptions, the performance of 3PRF

frequently surpasses that of its closest competitor, PCR. The augmented method, 3PRF LASSO, which

combines 3PRF with a LASSO regression involving the idiosyncratic components, consistently outper-

forms both 3PRF and PCR. In many cases, it also exceeds the performance of PCR augmented with a

LASSO step. When N is large relative to T , this advantage becomes almost universal, extending across

various factor strengths and serial/cross-sectional correlations in factors and idiosyncratic components.

Furthermore, 3PRF LASSO frequently outperforms LASSO when relevant factors are relatively strong

compared to irrelevant factors.

Our empirical application underscores the effectiveness of the 3PRF LASSO approach. We forecast

four key U.S. macroeconomic variables—GDP, Exports, the GDP Deflator, and Housing Starts—using

a comprehensive set of macroeconomic variables from the FRED-QD dataset by Clark & McCracken

[2023]. The 3PRF LASSO method demonstrates competitive performance compared to established

methods, highlighting its reliability in macroeconomic forecasting.

The paper is structured as follows. Section 2 introduces the proposed estimator, detailing its formu-

lation and operational mechanics. In Section 3, we outline a series of assumptions necessary to establish

the theoretical results presented in Section 4. This theoretical framework is then put to the test in Sec-

tion 5, where we explore the numerical properties of our estimator through comprehensive Monte Carlo

simulations. Section 6 focuses on empirical applications, demonstrating the estimator’s performance with

real-world data. Finally, Section 7 summarizes the key findings and offers concluding remarks.

1.1 Definitions and notations

Let y denote the T×1 vector of the target variable, i.e., y = (yh, yh+1, . . . , yT+h). We have N predictors,

each with T observations. The cross-section of predictors at time t is given by the N × 1 vector xt. The

temporal observations of predictor i form the T × 1 vector xi. The predictors are stacked in a T × N

matrix X, X = (x1,x2, . . . ,xT )
′ = (x1,x2, . . . ,xN ). We have L proxies stacked in a T × L matrix

Z = (z1, z2, . . . ,zT )
′.

Define JT ≡ IT − 1
T ιT ι

′
T , where IT is the T × T identity matrix and ιT is the T × 1 vector of ones.

JN is defined analogously. For matrices U and V of conformable dimensions, let WUV ≡ JNU ′JTV

and SUV ≡ U ′JTV .

Given an index set S ⊂ {1, . . . , N} and a vector X with i-th component Xi, define Xi,S = Xi1{i ∈

S}, where 1 is the indicator function. For a set A, |A| denotes its cardinality. For a vector v, v(m)
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denotes its m-th component. The norms we use in the paper are:

∥v∥1 =
∑
i

|vi|, ∥v∥2 =

(∑
i

v2i

)1/2

, ∥v∥∞ = max
i

|vi|.

For an m× n matrix A = [aij ], the following norms are used:

∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij |, ∥A∥1 = max
1≤j≤n

m∑
i=1

|aij |.

Stochastic orders are denoted by Op and op, while deterministic orders are O and o. We say a ≍ b,

if a = O(b) and b = O(a). For matrices, Op and op denote element-wise stochastic orders. A matrix

A is Op(1) if all elements are Op(1), and op(1) if all elements are op(1). The notation Op(a ∨ b)

denotes Op(max(a, b)) and Op(a ∧ b) denotes Op(min(a, b)). maxi{Ai}i∈{1,...,N} denotes the element-

wise maximum of matrices {Ai}i∈{1,...,N}. The abbreviation ‘w.p.’ stands for ‘with probability’ and

‘w.r.t.’ stands for with respect to.

2 The Estimator

We predict the target y using a two-stage process which we call 3PRF LASSO. Stage 1 of this process is

the 3PRF procedure by Kelly & Pruitt [2015]. 3PRF is essentially a sequence of linear regressions aimed

at consolidating information from a large set of predictors in a small set of factor(s). The procedure

relies on a set of ‘proxies’ Z, which, as in Kelly & Pruitt [2015], are required to be driven by target-

relevant factor(s) while remaining unaffected by target-irrelevant factor(s). This requirement, explained

in greater detail in the next section, is a crucial element in identifying the target-relevant factor(s). Once

we obtain the target relevant factor(s) from Stage 1, we regress each predictor xi on them and estimate

the residual(s). Thereafter, we perform a LASSO regression to extract any predictive content in these

residuals for our target y. Detailed procedure is outlined below.
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Algorithm 1 : 3PRF LASSO Procedure

Stage 1 (Three Pass regression Filter, 3PRF)

Pass Description

1. Run time series regression of xi on Z for i = 1, . . . , N ,

xi,t = ϕ̃0,i + ϕ̃
′
izt + v̂it, retain slope estimate ϕ̃i.

2. Run cross-section regression of xt on ϕ̃i for t = 1, . . . , T ,

xi,t = ϕ̃0,t + ϕ̃
′
iF̂ t + ε̃it, retain slope estimate F̂ t.

3. Run time series regression of yt+h on predictive factors F̂ t,

yt+h = β̂0 + β̂
′
F̂ t + ût+h, delivers initial forecast ŷt+h,f = β̂0 + F̂

′
tβ̂.

Retain the residual ût+h and the Stage 1 forecast ŷt+h,f .

Stage 2 (Three-Pass Regression Filter augmented with LASSO, 3PRF LASSO)

Pass Description

4. Run time series regression of xi on F̂ for i = 1, . . . , N ,

xi,t = ϕ̂0,i + ϕ̂
′
iF̂ t + ε̂it, retain the residual ε̂it

5. Run LASSO regression of ût+h obtained from Pass 3 in Stage 1

on the estimated residuals ε̂it,

ût+h = γ̂′ε̂t + η̂t+h.

The final forecast is given by

6. ŷt+h = β̂0 + β̂
′
F̂ t + γ̂′ε̂t

From Stage 1 and Stage 2, the final forecast is obtained in Pass 6. We can rewrite the final forecast as

ŷ = ιT ȳ + JT F̂ β̂︸ ︷︷ ︸
ŷf

+ ε̂γ̂︸︷︷︸
ŷε

,

where the Stage 1 forecast is given by

ŷf = ιT ȳ + JT F̂ β̂

= ιT ȳ + JTXWXZ

(
W ′

XZSXXWXZ

)−1
W ′

XZSXy.

The estimated factor(s) are given by

F̂
′
= SZZ

(
W ′

XZSXZ
)−1

W ′
XZX

′,
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and the estimated coefficient(s) of the factor(s) are given by

β̂ = SZZWXZSXZ
(
W ′

XZSXXWXZ

)−1
W ′

XZSXy.

Alternatively, we can rewrite the Stage 1 forecast as

ŷf = ıȳ + JTXα̂,

where α̂ is the implied predictive coefficient for X and is given by

α̂ = WXZ

(
W′

XZSXXW ′
XZ

)−1
W ′

XZSXy.

The procedure described above relies on the availability of suitable proxies, which can be obtained

through relationships established in economic theory or constructed using the target variable in a sequen-

tial manner. Proxies constructed using y are referred to as automatic proxies (auto-proxies for short).

Kelly & Pruitt [2015] explains how such auto-proxies can always be constructed. The process to obtain

L proxies is laid out below. Theorem 7 of Kelly & Pruitt [2015] proves that such proxies are valid; in

the sense that they adhere to the assumptions of the model outlined in Section 3.

Algorithm 2: Auto-Proxy Algorithm

0. Initialize r0 = y. For k = 1, . . . , L (where L is the total number of proxies):

1. Define the kth automatic proxy to be rk−1. Stop if k = L; otherwise proceed.

2. Compute 3PRF for target y using cross-section X and statistical proxies 1 through k.

Denote the resulting forecast ŷk.

3. Calculate rk = y − ŷk, advance k, and go to step 1.

To understand the functioning of this three-pass procedure, it is instructive to look at the data-

generating process for the proxies.

Z = ιTλ
′
0 + FΛ′ + εζ′ + ω. (2.1)

Kelly & Pruitt [2015] provide a detailed explanation of how the supervision process operates. Pass

1 of 3PRF constitutes the supervision step, where the relevant factor loadings across predictors are

estimated, up to a rotation, while those associated with irrelevant factors are filtered out. Kelly & Pruitt

[2015] mention that “Fluctuations in the latent factors cause the cross-section of predictors to fan out and

compress over time. First-pass coefficient estimates map the cross-sectional distribution of predictors to

the latent factors.” This statement holds true only if the composite error term εζ′ + ω is uncorrelated
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with the idiosyncratic components of the predictors. This is trivially true in the framework of Kelly

& Pruitt [2015], since they assume ζ = 0 and ω is uncorrelated with ε. When ζ ̸= 0, we encounter

what we refer to as the ‘corrupted’ supervisor problem; the supervisor is imperfect in the sense that

it cannot estimate some of the loadings, upto a rotation, consistently in Pass 1 of 3PRF. To illustrate

this, consider a simplified case with only one factor. It can be easily verified that when ζ = 0 and ω

is uncorrelated with ε, then, through Pass 1 of Stage 1, we obtain ϕ̃i = cϕi + Op(T
−1/2), where c is a

constant not dependent on i. This implies that Pass 1 of 3PRF, in this setting, can estimate all loadings

up to a constant of proportionality. However, this convenient feature is lost when ζ ̸= 0, since in that

case, for all j such that ζj ̸= 0, we would have ϕ̃j = cϕj + dj + Op(T
−1/2). This dj term is Op(1) and

arises from the correlation between {εj |ζj ̸= 0} in the data generating process of Z and predictor(s)

in the set ∆j = {xi|εi is correlated with εj}. Through a set of assumptions, we restrict the extent of

this corruption. Once Pass 1 is ensured to function adequately, that is, the extent of ‘corruption’ is

negligible asymptotically, Kelly & Pruitt [2015] explain that “second-pass cross-sectional regressions use

the estimated mapping in Pass 1 to back out estimates of the factors at each point in time.”, enabling

consistent estimation in Stage 1 of 3PRF. Stage 2 simply proceeds by using consistent estimates of the

factors in Stage 1.

Remark 1. One practical issue is choosing the number of factors when we are using the Auto-Proxy

algorithm. Kelly & Pruitt [2015] adopt a method initially presented by Krämer & Sugiyama [2011] to

calculate the number of factors. We, do not delve into the question of estimating the number of factors

in this paper. One may use an information criteria as mentioned or divide the data into a training and

validation set and estimate the number of relevant factors using a cross validation technique. Using a

single 3PRF factor is a prudent choice as highlighted in Appendix 7.2 of Kelly & Pruitt [2015]. They

demonstrate that there are situations where the original data generating process (DGP) of y, which

involves multiple relevant factors, can be reformulated as a DGP with a single relevant factor. Moreover,

in cases where a single-factor representation is not feasible, the variation in the target explained by

the first estimated factor typically far exceeds that explained by the factors estimated subsequently, as

demonstrated in Appendix 7.3 of Kelly & Pruitt [2015]. This is due to the fact that 3PRF estimates

a rotation of underlying factors, with the first estimated factor explaining the maximal variation of the

target.

3 Setup

Below, we delineate our data generating process and the associated assumptions.
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Assumption 1. (Data generating Process). The data is generated as follows:

xt = ϕ0 +ΦF t + εt, yt+h = β0 + β′F t + γ′εt + ηt+h, zt = λ0 +ΛF t + ζεt + ωt,

X = ιTϕ
′
0 + FΦ′ + ε, y = ιTβ0 + Fβ + εγ + η, Z = ιTλ

′
0 + FΛ′ + εζ′ + ω,

where F t =
(
f ′
t, g

′
t

)′
,Φ = (Φf ,Φg) ,Λ = (Λf ,Λg), and β =

(
β′
f ,0

′)′ with ∣∣βf ∣∣ > 0. Kf > 0 is the

dimension of vector f t,Kg ≥ 0 is the dimension of vector gt, L > 0 is the dimension of vector zt, and

K = Kf +Kg. Furthermore, for all j ∈ {i|γi ̸= 0}, β(m) = 0 implies ϕj(m) = 0.

Assumption 1 characterizes the factor structure of the predictors and the data-generating process

for both the target and proxies. The target is driven by a subset of factors that drive variation in

the predictors. In addition, we allow the target to be correlated with the idiosyncratic components, a

modification from Kelly & Pruitt [2015]. In the usual framework, factor(s) act as a convenient conduit

relating X to y. This involves an implicit assumption that X has no explanatory power for the target

after accounting for the latent factors, which may be unrealistic in various settings. The proxies are

driven by factor(s) and idiosyncratic components.

The idea of allowing the predictors to retain explanatory power for the target after accounting for

latent factors has been explored in other studies as well. Examples include Kneip & Sarda [2011],

Kapetanios & Marcellino [2010], and Fan et al. [2023a]. The latter two papers assume a DGP for the

target, which takes the following form,

y = ιTβ
∗
0 + Fβ∗ +Xγ∗ + η

= ιT
(
β∗
0 + ϕ′

0γ
∗)+ F

(
β∗ + ϕ′γ∗)+ εγ∗ + η.

Comparing it with the DGP of y given in Assumption 1, one can clearly see that, γ = γ∗ and β(m) =

β∗(m) +
∑
i ϕi(m)γ∗i = 0. We assume that β∗(m) +

∑
i ϕi(m)γ∗i = 0 only if β∗(m) = 0 and for

all j ∈ {i|γ∗
i ̸= 0} we have ϕj(m) = 0. We are ruling out the pathological cases where both these

aforementioned quantities are not zero but the sum β∗(m) +
∑
i ϕi(m)γ∗i = 0. This assumption is

succinctly expressed by stating that for all j ∈ {i|γi ̸= 0}, β(m) = 0 implies ϕj(m) = 0. This assumption

allows us to consistently recover the true idiosyncratic components for the relevant xi (i.e., {xi|γi ̸= 0})

in Stage 2 Pass 4 and subsequently implement Pass 5 in Stage 2.

Assumption 2. (Factors, Loadings and Residuals). Let M < ∞. For any i, s, t, 0 < ψf ≤ 1 and

0 < ψg ≤ 1,

1. E ∥F t∥4 < M,T−1
∑T
s=1 F s

p−→
T→∞

µ and T 1/2

(
F ′JTF

T
−∆F

)
= Op(1).

2. E ∥ϕi∥
4 ≤ M . For v = f, g, N−ψv

∑N
j=1 ϕvj

p−→
N→∞

ϕv < ∞, Nψv/2

(
Φv

′JNΦv

Nψv
− Pv

)
= Op(1)

11



and for ψs = min (ψf , ψg), N
ψs/2

(
Φf

′JNΦg

Nψs
− Pfg

)
= Op(1).

3. E (εit) = 0,E ∥εit∥8 ≤M .

4. E (ωt) = 0,E ∥ωt∥4 ≤M,T−1/2
∑T
s=1 ωs = Op(1) and T

1/2

(
ω′JTω

T
−∆ω

)
= Op(1).

5. Et (ηt+h) = E (ηt+h | yt, Ft, yt−1, Ft−1, . . .) = 0,E
(
η2t+h

)
= δη < ∞, and ηt+h is independent of

ϕi(m) and εi,t for any h > 0.

The vector µ is non-stochastic. The vectors ϕv for v = f, g are non-stochastic. The matrix ∆F ,

the matrices Pv for v = f, g, and Pfg are non-stochastic and are further characterized in Assumption 4.

Similarly, the matrix ∆ω is non-stochastic.

If ψf = ψg = 1 in Assumption 2.2, this corresponds to the strong factor assumption. Combined

with Assumptions 2.1, 2.3, and 2.5, it characterizes the typical structure of forecasting models based on

strong factors. These assumptions are standard in the literature; see Stock & Watson [2002] and Bai &

Ng [2006] in the context of PCR and Kelly & Pruitt [2015] in the context of 3PRF.

We allow for weak factors in the 3PRF framework by relaxing the strong factor assumption, con-

sidering a broader range of factor strengths with 0 < ψf ≤ 1 and 0 < ψg ≤ 1, where ψf and ψg may

differ. Similar approaches have been explored in the context of factor estimation using the principal

components method, as in Freyaldenhoven [2022] and Bai & Ng [2023].

Assumption 2.4 is similar to the assumption in Kelly & Pruitt [2015] which ensures that the proxy

noise is well-behaved. The fact that conditional expectation of ηt+h with respect to information set in

time t is zero implies that β0+β′
ff t+γ′εt provides the optimal forecast of the target at time t. However,

this forecast is infeasible as the factors and idiosyncratic components are not known.

Assumption 3. (Dependence). For M <∞ and any i, j, t, s,m1,m2 and v = f, g

1. Let E (εitεjs) = σij,ts, |σij,ts| ≤ σ̄ij, |σij,ts| ≤ τts, and

(a) N−1
∑N
i,j=1 σ̄ij ≤M , (b) T−1

∑T
t,s=1 τts ≤M ,

(c) N−1
∑
i,s |σii,ts| ≤M , (d) T−1

∑
i,t |σij,tt| ≤M ,

(e) N−1T−1
∑
i,j,t,s |σij,ts| ≤M .

2. (a) E
∣∣∣N−1/2T−1/2

∑T
s=1

∑N
i=1 [εisεit − σii,st]

∣∣∣4 ≤M ,

(b) E
∣∣∣N−1/2T−1/2

∑T
s=1

∑N
i=1 [εisεjs − σij,ss]

∣∣∣4 ≤M .

3. E
∣∣∣N−ψv/2T−1/2

∑T
t=1

∑N
i=1 ϕiv(m) [εitεjt − σij,tt]

∣∣∣2 ≤M .3

4. E
∣∣∣T−1/2

∑T
t=1 Ft (m1)ωt (m2)

∣∣∣2 ≤M .

3If weakness in loadings is induced by sparsity, i.e., the factor(s) are local, then we can use Assumption 3.2 to prove
3.3 by slightly modifying the argument in Kelly & Pruitt [2015] Lemma 1.1 and Lemma 1.2. However, we consider a more
general setting where factors(s) may not be local; instead, all loadings are weak, and hence we introduce this assumption.
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5. E
∣∣∣T−1/2

∑T
t=1 ωt (m) εit

∣∣∣2 ≤M .

6. E
∣∣∣T−1/2

∑T
t=1 Ft (m) εit

∣∣∣2 ≤M .

7. E
∣∣∣N−ψv/2

∑N
i=1 ϕiv (m1) εit

∣∣∣2 ≤M .

Assumption 3.1-3.2 allow weak cross-sectional and temporal dependence in the idiosyncratic com-

ponents; this set of assumptions characterize an approximate factor model (Chamberlain & Rothschild

[1983]). Essentially, we require that the idiosyncratic components lack an underlying factor structure, as

the presence of such a structure would render the true factor space unidentifiable. Assumptions 3.1-3.4

with ψf = ψg = 1 are common in literature, see Bai [2003], Stock & Watson [2002], Kelly & Pruitt [2015]

among others. Bai & Ng [2023] extends Bai [2003] to accommodate weak factors by making similar

adjustments to the assumptions as we have done above.

Assumptions 3.4-3.7 are reasonable since they involve products of orthogonal series. We can specify

lower-level conditions (several mixing conditions) which guarantee 3.1-3.7, but for the sake of simplicity,

we instead state these high-level assumptions, as done in other papers, see Kelly & Pruitt [2015] and Bai

[2003] among others.

Assumption 4. (Uncorrelated loadings and Factors). For matrices Pf , Pfg and ∆F , featuring in

Assumption 2, we require the following,

1. Pf is positive definite and Pfg = 0.

2. ∆F ≡

∆f ∆fg

∆fg ∆g

 is positive definite and ∆fg = 0.

We require that the relevant factors be uncorrelated with the irrelevant factors and that the associated

relevant factor loadings also be uncorrelated with the irrelevant factor loadings. This condition is less

stringent than the assumption in Kelly & Pruitt [2015], where all loadings are assumed to be orthogonal

to each other, and all factors are also assumed to be mutually orthogonal.4

Assumption 5. (Relevant Proxies).

1. Λ =

[
Λf 0

]
.

2. Λf is non-singular.

Assumption 5 is borrowed from Kelly & Pruitt [2015]. We require proxies to mimic the target in

terms of their dependence on factors. The assumption asserts that proxies must meet three criteria:

(i) they should not load on irrelevant factors, (ii) their loadings on relevant factors should be linearly

independent, and (iii) their number should match the number of relevant factors. When combined with

4See Assumption 5 (Normalization) in Kelly & Pruitt [2015].
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Assumption 4, this implies that the common components of proxies span the relevant factor space and

that none of the variation in proxies stems from irrelevant factors.

Assumption 6. For v = f, g, define ΓNv,T ≡ min(
√
Nψv ,

√
T ) and δN,T ≡ min(

√
N,

√
T ). We need

the following:

1. limN→∞,T→∞
N1−ψf√
T δN,T

= max
(
N1−ψf

T , N
1/2−ψf

T 1/2

)
= 0.

2. limN→∞,T→∞
Nψg−ψf

ΓNg,T
= max

(
Nψf−ψg

√
T

, Nψf−
ψg
2

)
= 0.

Assumption 6 specifies the necessary growth rate of T relative to N under a weak factor structure.

It is automatically satisfied when ψf = ψg = 1. When all factors have same strength, ψf = ψg = ψ,

Assumption 6.1 implies that a small ψ necessitates a larger T relative to N for consistent estimation. This

requirement embodies an implicit cost imposed by a weak factor structure. When ψf ≥ ψg, Assumption

6.2 is automatically satisfied. Conversely, when ψf < ψg, Assumption 6.2 reflects the cost of having

higher noise (irrelevant factors) relative to the signal (relevant factors). Additionally, Assumption 6.2

imposes a limit on the weakness of relevant factors relative to irrelevant factors for the consistency of

3PRF, requiring that ψf >
ψg
2 .

Assumption 7. (Uniform bounds). For all m, N and T , v = f, g and some positive constants r1, . . . , r5,

1. maxi ϕi(m) = Op(1).

2. maxit |εit| = Op((logN)r1) +Op((log T )
r1).

3. maxi

∣∣∣∣∑T
t=1

1√
T
εit

∣∣∣∣ = Op((logN)r2) and maxt

∣∣∣∣∑N
i=1

1√
N
εit

∣∣∣∣ = Op((log T )
r2).

4. maxi

∣∣∣∣ 1√
T

∑T
t=1 Ft (m) εit

∣∣∣∣ = Op((logN)r3).

5. maxi

∣∣∣N−ψf/2T−1/2
∑
j,t ϕjf (m) εjtεit

∣∣∣ = Op((logN)r4).

6. maxi

∣∣∣N−1/2T−1/2
∑
j,t εitεjt

∣∣∣ = Op((logN)r5).

We impose some high-level assumptions. We require uniform bounds on certain empirical processes

to ensure that the prediction error in the Stage 1 does not adversely affect the theoretical results in

Stage 2 LASSO regression. Such assumptions are prevalent in the literature. Specifically, Assumption

7.1 featured in Fan et al. [2020] and Giglio et al. [2023] and references therein. In fact, Fan et al. [2020]

assumes that the maxima of factors, loadings, and idiosyncratic terms do not scale with N and T and

are uniformly bounded by some constant.5 Similarly, Giglio et al. [2023] incorporates Assumption 7.2

with r1 = 1/2. The partial sums (after centering) in Assumptions 7.4–7.6 (without taking the maximum

over i) are bounded by Assumptions 3.2, 3.3, and 3.6. We assume that the maximum of these empirical

5See Assumption 4.6 regarding Wmax in Fan et al. [2020].
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processes scales as some power of the logarithm of N . This assumption is equivalent to imposing a

uniform tail bound on these partial sums (see Remark 2).

Remark 2. The scaling properties outlined in Assumption 7 are often associated with Weibull distri-

butions, which are widely employed in economics. Their flexibility and ability to capture various shapes

of distributions make them a general and versatile assumption in economic analyses. A more general

assumption could be to impose moment bounds on the random variables and scaled partial sums in As-

sumption 7. For a random variable Xi, where i ∈ {1, . . . , N}, if E(X k
i ) < M for some finite k, then by

Markov Inequality we have

P(Xi > N1/k) <
E(X k

i )(
N1/k

)k ≤ M

N
.

Hence, maxi P(Xi > N1/k) ≤ MN
N ≤ M ; the highest ordered statistic of X scales with the rate at most

N1/k. Therefore, we can instead state Assumption 7 by assuming the existence of a sufficiently large k

that allows the theoretical properties of Stage 2 involving LASSO as stated in Theorem 5 to hold.

Assumption 8. (Weak cross sectional dependence). For each i, let ∆i,ε ≡
{
j
∣∣∣E ∣∣∣T−1/2

∑T
t=1 εitεjt

∣∣∣2 ≤M <∞
}
.

Then N − |∆i,ε| ≤M2 <∞.

Assumption 8 strengthens Assumption 3 by imposing a truncated form of cross-sectional dependence.

Such a truncation in temporal dependence is commonly assumed in the literature; for instance, see

Gonçalves et al. [2017]. A non-zero ζ introduces ‘corruption’ in the supervisor, which necessitates

assuming weaker dependence in the idiosyncratic terms to enable consistent estimation.

Assumption 9. (‘Relevant’ idiosyncratic terms and mimicking proxies).

1. Let S ≡ {i|γi ̸= 0}. The cardinality of set S is bounded, i.e., |S| ≤M <∞

2. γi = 0 if and only if ζ′
i = 0, where ζ′

i denotes the ith row of matrix ζ′.

We require the set of ‘relevant’ idiosyncratic terms to be finite. If this set were allowed to grow in

size, we would need to adjust the rates in various ensuing Theorems. The dependence of the target

(and thereby proxies) on idiosyncratic terms leads to noisier estimation in Stage 1 of the 3PRF LASSO

Procedure. If many idiosyncratic terms have explanatory power for y, the extent of corruption in the

Stage 1 Pass 1 (supervising step) is greater. The assumption that γi = 0 if and only if ζ′
i = 0 can be

relaxed. We only require that |{i|ζ′
i ̸= 0}| < ∞ to establish our theoretical results. However, since Z is

used as a proxy for y, it is reasonable to assume that their data-generating processes are similar.

Remark 3. The dependence of the target on idiosyncratic terms can be ‘dense’ in the sense that a lot

of idiosyncratic terms have non-zero small coefficients, see He [2024]. In such cases, as shown in his

paper, ridge regression is asymptotically efficient in capturing both factor and idiosyncratic information

among the entire class of spectral regularized estimators. Our model, unlike his paper, assumes that the

15



dependence of the target on idiosyncratic terms is sparse, more akin to the setting in Fan et al. [2020]

and Kneip & Sarda [2011].

Assumption 10. (Stage 2 LASSO Regression). The following assumptions are necessary to establish the

convergence result in Theorem 5 for the Stage 2 LASSO regression, which involves generated regressors.

For r1, . . . , r5 as defined in Assumption 7, we require:

1. (a) r ∈ {r1, . . . r5},
(logN)r√

T
= O(1).

(b)
N1−ψf
√
T

[(logN)r1 + (log T )r1 ] = O(1).

2. There exists a large enough constant κ > 0 s.t. ∀i ∈ {1, . . . , N}, and ∀ T , we have,

P

(
|
∑T
t=1 εitηt+h|√

T
> s

)
≤ exp

(
−s2

κ

)
.

3. Define ∆ε,g :=
(
ε+ JTgΦ

′
g

)′ (
ε+ JTgΦ

′
g

)
/T . For the N × N matrix ∆ε,g, we say that, w.r.t.

∆ε,g, the compatibility condition is met for some set A ⊂ {1, . . . , N}, if for some compatibility

constant ν > 0, and for all N × 1 vectors Θ satisfying ∥ΘAc∥1 ≤ 3 ∥ΘA∥1, it holds that

∥ΘA∥21 <
(
Θ′∆ε,gΘ

)
|A|/ν2.

We assume that, w.p. approaching one, the compatibility condition is met for set S defined in

Assumption 9, w.r.t. ∆ε,g and the associated compatibility constant is ν0.

Assumption 10.1 is required to bound the impact of estimation errors in Stage 1 on Stage 2, as

generated regressors are used in Stage 2. Assumption 10.2 is naturally satisfied for i.i.d. sub-Gaussian

processes, which are commonly employed in deriving the properties of LASSO, as seen in Bühlmann &

Van De Geer [2011]. Although the current setup does not assume i.i.d., we assume a weak dependence

structure that obeys a similar sub-Gaussian-type bound on partial sums. Assumption 10.3, the com-

patibility condition, is standard in the LASSO literature (see Bühlmann & Van De Geer [2011]). This

assumption essentially restricts the correlation among the relevant idiosyncratic components, ensuring

they are not excessively interdependent.

4 Theoretical Results

We present each of the Theorems 1-4 in two parts, labeled as parts (a) and (b). The first part (a)

accommodates the idea of weak factor(s), while the second part (b) focuses on cases where idiosyncratic
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terms have predictive content for the target. We, therefore, cater to diverse readerships; certain readers

may find one part more interesting than the other, while some may be interested in both.

Asymptotic results throughout the paper are based on simultaneous N and T limits, as in Bai [2003]

and Kelly & Pruitt [2015]. As explained in Bai [2003], a simultaneous limit implies the existence of

coinciding sequential and path-wise limits, but not vice-versa. Proofs for all the Theorems are provided

in Appendix A.

Define Ξ−1
NT ≡ max

(
T−1/2, N−ψf/2, N

ψg−ψf

ΓNgT

)
= max

(
T−1/2, N−ψf/2, N−ψf+ψg/2, N

ψg−ψf√
T

)
, where

the equality follows from substituting the value of ΓNgT as defined in Assumption 6.

Theorem 1. (a) Let Assumptions 1-6 hold and γ = 0 and ζ = 0. Additionally, if
N1−ψf
√
T

= O(1), then

we have,

ŷt+h,f − Etyt+h = Op(Ξ
−1
NT ),

where Etyt+h denotes the conditional expectation of the target variable at t+h given the information set

at t.

(b) Let Assumptions 1-6 and 8-9 hold, γ ̸= 0 and ζ ̸= 0. Furthermore,
N1−ψf
√
T

= O(1) and
T

N
= O(1),

then

ŷt+h,f − E (yt+h|F t) = Op(Ξ
−1
NT ).

Theorem 1 (a) specifies the rate of convergence of the Stage 1 forecast when γ = 0 and ζ = 0 but

0 < ψf ≤ 1 and 0 < ψg ≤ 1, hence generalizing Kelly & Pruitt [2015] by accommodating weak factor(s).

When ψf = ψg = 1 , the rate is δ−1
N,T (δN,T ≡ min(

√
N,

√
T )).

Theorem 1 (b) establishes that the Stage 1 forecast converges to the conditional expectation of the

target w.r.t. true relevant factors. Unlike Theorem 1 (a), this factor-based forecast is no longer optimal

because γ is allowed to take a value different from 0, indicating that the idiosyncratic components

contain predictive information for the target. This predictive content in idiosyncratic components is

harnessed in subsequent Stage 2. Theorem 1 (b) generalizes Kelly & Pruitt [2015] along 2 dimensions,

i.e., accommodating weak factors and abstracting away from the assumption that yt+h−E(yt+h|F t) has

a conditional expectation of zero with respect to information set in period t.

Remark 4. If factor(s) are strong, Theorem 1(a) would imply that ŷt+h,f −Etyt+h = Op(δ
−1
NT ). This is

different from the result in Kelly & Pruitt [2015] where the rate is Op(T
−1/2), (see Theorem 4 in their

paper). Their proof follows two steps. First they show that ŷt+h− ỹt+h = Op(T
−1/2) and then they argue

that
√
T ỹt+h −→

T,N→∞
Etyt+h. Since ỹt+h is Op(1),

√
T ỹt+h would diverge to infinity and their statement

would be false. If they erroneously wrote this and instead wanted to imply that
√
T (ỹt+h − Etyt+h) −→

T,N→∞

0, then, again this statement is false because ỹt+h −Etyt+h has random elements which converge to 0 at

a rate which is Op(N
−1/2) +Op(T

−1/2) = Op(δ
−1
NT ).
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Theorem 2. Let α̂i denote the ith element of α̂. If Assumptions 1-6 hold, γ = 0 and ζ = 0. If

Pf = IKf , then for any i,

Nψf α̂i
p−−−−−→

T,N→∞

(
ϕif −Nψf−1ϕ̄f

)′
βf .

Theorem 2 establishes consistency of the implied predictive coefficient α̂ in a scenario with possibly

weak factors. This generalizes Theorem 2 of Kelly & Pruitt [2015], where this result is stated for

ψf = ψg = 1. As argued in Kelly & Pruitt [2015] , as N grows, the predictive information in f is spread

across a larger number of predictors so each predictor’s contribution approaches zero at the rate of
1

N
.

That is the case when the number of predictors which load on the factors is proportionate to N , i.e.,

strong factor(s). When the factor(s) are weak, they may either be local or have weak (local to zero)

loadings or an amalgam thereof. If the factor(s) are not pervasive, the predictive information contained

within the vector f is dispersed across a few variables. The standardization term Nψf illustrates that

the predictive information is distributed across a subset of predictors; where the size of this subset is

proportional to Nψf . Hence, the contribution of each predictor goes to 0 at a slower rate compared to

pervasive factors. When the factor(s) are pervasive but loadings are weak, in the sense that ϕif = cnϕ̃if ,

where ϕ̃if is a constant (not dependent on N), then Assumption 2.2, would imply that cn = O(Nψf−1),

which would imply that Nα̂i
p−−−−−→

T,N→∞

(
ϕ̃if − ¯̃

ϕf

)′
βf . Consequently, when factors are pervasive but all

loadings are weak (local to zero), the predictive information in f is distributed across all predictors, and

the relative contribution of each predictor diminishes at a rate of
1

N
, similar to the scenario with strong

factor(s).

Define Gβ ≡ β̂
−1

1 β̂2

(
Λf∆fPf∆fPf∆fΛ

′
f

)−1
(Λf∆fPf∆f ) , where β̂1 = T−1Z ′JTZ and

β̂2 = N−ψfT−2Z ′JTXJNX ′JTZ.

Theorem 3. (a) Let Assumptions 1-6 hold and γ = 0 and ζ = 0. Additionally, if
N1−ψf
√
T

= O(1), then

we have,

β̂ −Gββf = Op(Ξ
−1
NT ).

(b) Let Assumptions 1-6 and 8-9 hold, γ ̸= 0 and ζ ̸= 0. Furthermore,
N1−ψf
√
T

= O(1) and
T

N
= O(1),

then,

β̂ −Gββf = Op(Ξ
−1
NT ).

Theorem 3 (a) specifies the convergence rate of the vector of predictive coefficient(s) of the factor(s),

i.e., β̂ to a rotated version of the true coefficient vector β. This generalizes Theorem 5 of Kelly & Pruitt

[2015] by accommodating weak factor(s). Just like Theorem 1 (a), when ψf = ψg = 1, the rate is δ−1
N,T ,

which is dissimilar to the
√
T rate specified in Kelly & Pruitt [2015]. This difference stems from the

definition of rotation matrix Gβ , see Remark 5. Theorem 3 (b) extends the scope of Theorem 3 (a) by

allowing a more general DGP where idiosyncratic elements possess predictive capabilities for the target.
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DefineHf ≡ F̂AF̂
−1

B Λf∆fPf andH0 ≡ F̂AF̂
−1

B

[
N−ψfT−1Z ′JTXJNϕ0

]
, where, F̂A = T−1Z ′JTZ

and F̂B = N−ψfT−2Z ′JTXJNX ′JTZ.

Theorem 4. (a) Let Assumptions 1-6 hold and γ = 0 and ζ = 0. Additionally, if
N1−ψf
√
T

= O(1), we

have,

F̂ t − (H0 +Hff t) = Op(Ξ
−1
NT ).

(b) Let Assumptions 1-6 and 8-9 hold, γ ̸= 0 and ζ ̸= 0. Furthermore,
N1−ψf
√
T

= O(1) and
T

N
= O(1),

we have,

F̂ t − (H0 +Hff t) = Op(Ξ
−1
NT ).

Similar to the aforementioned Theorems, both Theorem 4 (a) and Theorem 4 (b) extend the findings

of Theorem 6 in Kelly & Pruitt [2015] by accommodating weak factor(s) and permitting idiosyncratic

terms to have predictive information for the target variable respectively.

Theorem 4 (a) and 4 (b) establish the convergence of the estimated factor(s) to a rotation of the

true relevant factor(s) and provide the corresponding rate. Our convergence result diverges from the

one presented in Kelly & Pruitt [2015]. They demonstrate the convergence of F̂ t to a vector HF t

(H ̸= Hf ) at a
√
N rate. However, the matrix H, as defined in their paper, does not satisfy certain

desirable properties, which we highlight in Remark 5.

Remark 5. As highlighted in Bai & Ng [2006] and also emphasized in Kelly & Pruitt [2015], the

presence of matrices Hf and Gβ in Theorem 3 and Theorem 4 stems from our estimation of a vector

space. These Theorems “pertain to the difference between
[
F̂ t/β̂

]
and the space spanned by [F t/β]”.

The product H ′
fGβ equals an identity matrix, thereby nullifying the rotations in the predictive coefficients

and relevant factors and preserving the direction spanned by β′F t. However, this characteristic is absent

in Theorems 5 and 6 of Kelly & Pruitt [2015]. The matrices H and Gβ as defined in their paper do not

necessarily yield a product that equals an identity matrix.

Theorem 5. Let the regularization parameter in the Stage 2 Pass 5 regression be given by λ :=

2

√
c+ κ logN

ΞNT
, c > 0 and κ is defined in Assumption 10. Then, if Assumptions 1-10 hold, w.p. at

least 1−
(
exp

[
− c
κ

]
+ o(1)

)
, we have,

1

T
∥ε̂γ̂ − εγ∥2 = Op

(√
logN

ΞNT

)
.

Corollary 5.1. From Theorem 5 and Theorem 1 (b), it follows that

1

T
∥ŷ − E(y|F , ε)∥2 = Op

(√
logN

ΞNT

)
.
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Theorem 5 establishes the rate at which the average prediction error of the Stage 2 LASSO regression

converges to 0. The rate

√
logN

ΞNT
, in general, is different from

√
logN
T , which represents the optimal

convergence rate for a high-dimensional M estimator, as indicated in Bickel et al. [2009]. This slower

convergence rate is induced by the complexities associated with the generated regressor problem. To

mitigate the maximum estimation error (across i) when generating the idiosyncratic components, it

becomes imperative to adjust the rate at which the regularization parameter asymptotically converges

to zero. This necessitated adjustment leads to a more gradual rate of convergence.

4.1 Discussion and Comparison with Principal Component regression

Given the theorems we have derived, we can now discuss the theoretical advantages that the 3PRF, and

by extension Partial Least Squares (PLS), which is equivalent to auto-proxy 3PRF, offers over PCR.

If Nψf = O(T ), an advantage arises when relevant factors are stronger than irrelevant factors, i.e.,

ψf > ψg.
6

To see this, consider a PCR model that uses the first K principal components, where K is equal to

the number of factors, as regressors. From the discussion in Section 2.2 of Bai & Ng [2006], leading up

to their Theorem 3, one can deduce the following:

ŷPCRt+h − Etyt+h =
(
β̂
PCR

− β′H−1
)
F̂
PC

t + β′H−1
(
F̂
PC

t −HF t

)
, (4.1)

where ŷPCRt+h is the predicted value of the target at time t+h, formed using predictors available at time t

via PCR; Etyt+h denotes the conditional expectation of the target variable at t+h given the information

set at t; H is an invertible rotation matrix; and F̂
PC

t represents the estimated factors obtained as the

leading K principal components.

The convergence of PCR prediction to Etyt+h depends on two main components: the convergence

of β̂
PCR

to a rotated version of the true coefficient vector β, and the convergence of F̂
PC

t to a rotated

version of the true factors F t. Adapting the results of Lemma 4 from Bai & Ng [2023] to the case of

heterogeneous factor strengths, if
√
T/Nψg = o(1), the first term in Equation 4.1 converges to zero at a

rate of
√
T . For the second term, the convergence rate depends on the elements of F̂

PC

t −HF t and the

structure of β′H−1.

Even if β contains zero elements (for irrelevant factors), the rotation matrix H generally results in

β′H−1 having nonzero elements. Although the components of β′H−1 corresponding to zero entries in β

may converge to zero under specific settings, this convergence occurs more slowly than the convergence

of the estimated factors to a rotated version of the true factors. To illustrate, consider a case with two

factors, F1t and F2t, where only the first factor is relevant to the target variable (i.e., β = (β1, 0)
′). If H

6The condition Nψ
f = O(T ) is assumed to show the impact of factor convergence rates; we avoid allowing T to determine

the rates, as this would trivially render both regressions with an equivalent rate.
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were the identity matrix, the convergence of the second term in (4.1) would depend on how fast F̂PC1t ,

the first estimated factor, converges to F1t.

It has been established that, under certain conditions—more restrictive than those considered in this

paper— the rotation matrix H converges to the identity matrix.7 However, this convergence occurs at

a slower rate compared to the rate at which the estimated factors converge to the rotated versions of

the true factors (see Lemma 3 in Freyaldenhoven [2022]). Consequently, the convergence of the second

term in Equation (4.1) is determined by the rate at which the elements of the vector F̂
PC

t converge

to a rotated version of F t and this rate is determined by the slowest converging element within F̂
PC

t .

In our simplified two-factor setting, if the irrelevant factor is weaker, then from Proposition 7 of Bai

& Ng [2023], we have F̂
PC

t − HF t = Op(N
−ψg/2), and hence the convergence rate of PCR, which is

determined by the two terms in Equation 4.1, and would be equal to min(Nψg/2, T 1/2) = Nψg/2 as

Nψg = o(Nψf ) = O(T ).

One may, however, wonder what if we included only the leadingKf principal components as regressors

instead of all. Intuitively, this might seem advantageous, as the factors estimated using the leading Kf

principal components of X are expected to converge to the strongest Kf factors. These strongest factors

correspond to the relevant factors when ψf > ψg. Thus, it might seem that using only the first Kf

principal components could result in faster convergence of PCR. However, this is not the case. The

estimated factors obtained via the principal component method using the first Kf principal components

converge to a rotated version of the true factors, not the true factors themselves. Consequently, unless

the rotation matrix converges to the identity matrix, the leading Kf principal components will provide

a noisy estimate of the relevant factors. Furthermore, the convergence of the rotation matrix to the

identity matrix occurs at a slow rate, limiting the potential benefits of using only the leadingKf principal

components in PCR.

To make things clear, once again, consider a case with two factors: one relevant and one irrelevant,

and let ψf > ψg. Then, according to Bai & Ng [2023], the PC estimate of the leading factor, i.e., F̂PC1t ,

converges to hFt where h = [h1, h2]. For F̂1t to serve as a reliable predictor, we need h2 to converge to zero;

otherwise, F̂PC1t would represent a linear combination of relevant and irrelevant factors, not the relevant

factor alone, leading to the inconsistency of PCR (which uses only the leading principal component).

Under Assumption 1 of Freyaldenhoven [2022], which is more restrictive than the assumptions in our

paper, along with additional assumptions that are comparable to those we impose, we can apply Theorem

7See Assumptions 1(b) and 1(c) in Freyaldenhoven [2022], which are substantially more restrictive than Assumption
4 imposed in our paper regarding the covariance structure of factors. Our assumptions are placed on the population
covariance matrices, whereas Freyaldenhoven [2022] requires certain assumptions to hold for sample covariance matrices.
Additionally, Freyaldenhoven [2022] imposes the restrictive condition that Φ′Φ (without any normalization) is diagonal,
which is a much stronger requirement. Despite these more restrictive assumptions, we compare our results to their setting
and demonstrate better properties.
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2 of Freyaldenhoven [2022] to deduce:

F̂PC1t − F1t = Op

(
N−

ψf
4

)
+Op

(
N

1
2−ψf

)
+Op

(
N1−2ψf

)
.

This follows since, one can derive the following using Lemma 3 of Freyaldenhoven [2022]:

h− [1, 0] = Op

(
N−

ψf
4

)
+Op

(
N

1
2−ψf

)
,

and F̂PC1t −hF1t = Op(1−2ψf )+Op(−ψf/2). Therefore, if we use the leading principal component in this

simplified two-factor case (with a strong relevant factor and a weak irrelevant factor), our convergence

rate cannot exceed Nψf/4, which is much slower than Nψf/2. Hence, when comparing PCR and 3PRF in

a case with strong relevant factors, we restrict our attention to cases where PCR includes all estimated

factors rather than just the leading principal components corresponding to the first Kf factor(s).

3PRF performs sub-optimally when irrelevant factors are stronger than relevant factors. In such cases,

as can be inferred from Proposition 7 of Bai & Ng [2023], PCR’s convergence rate to the infeasible best

forecast will be min(Nψf/2, T 1/2), whereas for 3PRF it is strictly slower, as can be seen in Theorem 1.

However, this scenario is improbable, as the predictors are typically driven by multiple irrelevant factors,

with at least some of these factors being probably weaker than the relevant factors. This is discussed

further in Remark 6. Figure 1 illustrates the performance of 3PRF and PCR when all relevant factors

have the same strength, all irrelevant factors have the same strength, and N ≍ T . D at (1, 1) represents

the case where both relevant and irrelevant factors are strong, as described in Kelly & Pruitt [2015]. The

figure highlights three distinct regions. In Region A (Green), relevant factors are relatively stronger,

determining the convergence rates, and 3PRF converges faster than PCR. Along the line ψf = ψg, the

convergence rates of PCR and 3PRF are identical. In Region B (Yellow), weak factor strength slows

convergence rates, but consistency is preserved, and PCR outperforms 3PRF. Finally, in Region C

(Red), 3PRF becomes inconsistent.

Remark 6. Introducing weaker irrelevant factors alongside stronger ones does not alter the theoretical

properties of 3PRF; the strength of the strongest irrelevant factor determines its convergence rate. In

contrast, the theoretical properties of PCR are affected by variations in the strength of irrelevant factors.

PCR requires the inclusion of all estimated factors as regressors, as omitting even a subset introduces

issues due to rotational indeterminacy. This indeterminacy arises because PCR estimates factors as

linear combinations of the true underlying factors, making it difficult to distinguish relevant factors from

irrelevant ones at a sufficiently fast rate. As a result, the leading principal components (equal to the

number of factors driving X) must be included as regressors in PCR.

If weaker estimated factors are excluded, the noise in the rotation matrix can prevent PCR from con-
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Figure 1: Convergence rate based on Factor strength. (Drawn for the case when N ≍ T ).

verging at a fast enough rate. Including all PC estimated factors resolves this issue but results in slower

convergence compared to 3PRF, as the weakest irrelevant factor then determines the rate of convergence

in PCR. Therefore, while 3PRF’s convergence rate is robust to variations in the strengths across irrele-

vant factors—being determined by the strongest irrelevant factor—PCR’s performance deteriorates when

there are weaker irrelevant factors, as all such factors must be estimated and included in the predictive

regression. When irrelevant factors vary in strength, with some being stronger and others weaker than

the relevant factors, the comparison between 3PRF and PCR becomes less clear; One must evaluate the

trade-off between excluding weaker estimated factors, which can lead to issues arising from rotational

indeterminacy, and including them, which may introduce problems due to their estimates being very

noisy.

5 Simulation Analysis

To evaluate the performance of our estimator in finite samples, we undertake Monte Carlo experiments.

The data is generated based on Assumption 1. We explore scenarios where Kf = 1 and Kg = k, with k

taking values of either 4 or 5. The relevant and irrelevant factors are generated as follows: we begin by

drawing the first observation from the N(0, 1) distribution, and then draw subsequent observations as

f̃t = ρf f̃t−1 + uf,t and g̃t = ρgg̃t−1+ ug,t with uf,t ∼ IIN(0, 1) and ug,t ∼ IIN (0,Σg), uf,t and ug,t are

uncorrelated and Σg is an identity matrix of order k. We divide each factor by its standard deviation to
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obtain f and g. The parameters ρf and ρg dictate the serial correlation among factors, and they take

values of 0, 0.3, or 0.9 in our setup, similar to Kelly & Pruitt [2015]. The idiosyncratic elements are

generated as, εi,t = aεi,t−1 + ε̃i,t. ε̃i,t =
(
1 + d2

)
vi,t + dvi−1,t + dvi+1,t where vi,t is standard normal.

The parameter a controls their serial correlation and takes values 0, 0.3 and 0.9 whereas d, which governs

the strength of cross-sectional correlation takes values of 0 or 1. For each predictor xi, the loading on

the relevant factor is independently drawn from a standard normal distribution and scaled by N−(1−ψf ).

Similarly, for each predictor, the loadings on the irrelevant factors are drawn independently from a

multivariate normal distribution with zero mean and an identity covariance matrix, where the dimension

of the covariance matrix is either 4 or 5. These loadings are then scaled by N−(1−ψg). Here, ψf represents

the strength of the relevant factor, while ψg denotes the strength of all irrelevant factors. ψf and ψg

take the values 0.7 or 1. For the set {i|γi ̸= 0}, we make ϕig = 0, in line with Assumption 1. The target

variable is generated as yt+1 = ft + αγ′εt + ηt+1, where ηt+1 ∼ IIN(0, 1), and γ = (0, 1, 1, 1, 1,0N−5)
′.

We set α = 0.3 when d = 1 and α = 0.375 when d = 0, ensuring that the explained variation by the

factors and idiosyncratic elements remains within a narrow band. For our simulations, we use the target

y as the auto-proxy.

We compare the out-of-sample performance of five methods: PCR (as described in Stock & Watson

[2002]), 3PRF by Kelly & Pruitt [2015], LASSO by Tibshirani [1996], PCR LASSO, and 3PRF LASSO

(our method). The PCR LASSO method is a two-stage procedure: initially, a regression of the target is

performed on the leading principal components (similar to Stock &Watson [2002]), followed by regressing

the residual from the initial regression on the idiosyncratic components. This process resembles our

method, with the key distinction being that the factors and idiosyncratic components are estimated

using an unsupervised technique, i.e., the principal components method. The hyper-parameter tuning

for the LASSO regressions in our simulations is performed using 10-fold cross-validation, following the

approach in Fan et al. [2020]. The column labeled ‘Oracle’ displays the average in-sample R-square value

(across repeated samples) derived from the infeasible regression of y on f and the ‘relevant’ idiosyncratic

elements, i.e., {εi|γi ̸= 0}. The following five columns report the average (across repeated samples) out-

of-sample R-square values for the 5 aforementioned methods. We consider 100 repeated samples. To

compute the out-of-sample R-squared values, we partition the sample into two halves: a training window

and a testing window, each comprising 100 observations. We use a fixed estimation window as described

in West & McCracken [1998].

The simulation results in Tables 1-4 show that, for a given strength of irrelevant factors, the perfor-

mance of all methods improves as the strength of the relevant factors increases. Conversely, all methods,

perform poorly when the strength of irrelevant factors increases for a fixed strength of relevant factors.

This outcome is anticipated, as higher factor strength enhances the signal-to-noise ratio in all predictors,

positively impacting these methods. However, when the strength of the relevant factor diminishes rela-
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tive to irrelevant factors, the 3PRF and 3PRF LASSO methods perform the poorest. This result aligns

with theoretical expectations, as the 3PRF, being a supervised method, is inherently more sensitive to

the variance in predictors attributable to relevant factors compared to alternative approaches. In con-

trast, when the strength of relevant factors increases relative to irrelevant factors—the 3PRF and 3PRF

LASSO methods exhibit the best performance.

When comparing PCR and 3PRF, we observe that 3PRF outperforms PCR in most cases, except

when the irrelevant factors are stronger than the relevant ones. Therefore, even when the idiosyncratic

terms possess predictive power for the target variable, 3PRF demonstrates strong performance. This

indicates that the ‘corruption’ in the 3PRF procedure, as discussed in Section 2, has a minimal effect

on its efficacy, and the advantages conferred by its supervised nature persist when compared to PCR.

Consequently, the 3PRF procedure is robust to minor perturbations in the DGP of the auto-proxy.

The simulation results reveal that, in most cases, 3PRF and PCR are outperformed by either LASSO,

3PRF LASSO, or PCR LASSO. This outcome is expected, as 3PRF and PCR do not leverage the

predictive power of idiosyncratic elements. When comparing 3PRF LASSO and PCR LASSO, we find

that 3PRF LASSO outperforms PCR LASSO in the majority of cases. Even when 3PRF LASSO does not

outperform PCR LASSO, its performance closely trails that of PCR LASSO. Conversely, when 3PRF

LASSO outperforms PCR LASSO, the margin of superiority is often substantial. This suggests that

augmenting the factor-based prediction model with an additional LASSO step is more effective when

factors are estimated using 3PRF rather than the principal component method. This superiority arises

from the supervised nature of 3PRF, which leads to better estimation of the relevant factors in Stage

1 of 3PRF LASSO relative to PCR. This improvement in Stage 1 percolates over to Stage 2, where

we deal with generated regressors. Additionally, we observe that the false positive rates in Stage 2 of

PCR LASSO are substantially higher than those in 3PRF LASSO, while the true positive rates remain

comparable, as shown in Online Appendix Tables B11-B14. The potential reasons for this are discussed

in Section B2 of the Online Appendix, where we also provide an additional experiment to corroborate

these findings.

The performance differential between 3PRF LASSO and PCR LASSO is more pronounced when

Kg = 5 compared to the case where Kg = 4, as evident from Tables 1 and 5.8 Furthermore, when the

training sample size T = 100 is half of the cross-sectional size N = 200, 3PRF LASSO exhibits much

better performance than PCR LASSO, as shown by comparing Tables 1 and 6.9

When comparing LASSO and 3PRF LASSO, we observe that 3PRF LASSO outperforms LASSO

when the relevant factors are relatively stronger than the irrelevant ones. Conversely, LASSO demon-

8The results reported in this paper examine the effect of increasing irrelevant factors with T = 100, N = 100, and
ψg = ψf = 1. Additional simulations in the Online Appendix confirm that these findings are consistent across different
sample sizes and factor strengths.

9This finding is robust beyond the limited comparison provided in Tables 1 and 6. Variations in the number of irrelevant
factors and factor strengths have little effect on this conclusion.
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strates superior performance when the relevant factors are weaker than the irrelevant factors. This result

aligns with intuition: stronger relevant factors improve the convergence rate of the Stage 1 estimates in

3PRF LASSO, which in turn enhances the accuracy of Stage 2 in 3PRF LASSO. However, when the

relevant factors are relatively weaker, the convergence rate of 3PRF is significantly impaired, leading

to suboptimal performance in Stage 2. The benefits of explicitly modeling the factor structure become

evident when the factors are strong, as this enhances the effectiveness of Stage 1 in 3PRF LASSO. The

improved estimation in Stage 1 carries over to Stage 2, leading 3PRF LASSO to outperform LASSO.

However, in cases where the factor structure is weak, estimation errors in Stage 1 can offset these ad-

vantages, reducing the overall effectiveness of 3PRF LASSO relative to LASSO.

Overall, 3PRF LASSO demonstrates robust performance, often outperforming its competitors, partic-

ularly when the relevant factors are relatively stronger than the irrelevant ones. Even when the strengths

of relevant and irrelevant factors are similar—whether all factors are strong or all are weak—3PRF

LASSO performs comparably to, and frequently better than, alternative methods. However, when the

irrelevant factors are relatively stronger than the relevant ones, the performance of 3PRF LASSO declines

and falls short of some of its competitors.

The tables in this paper present a subset of the simulation results discussed in Section 5. Additional

simulation results, evaluating the effect of sample sizes across varying numbers of factors and factor

strength combinations, are provided in the Online Appendix. True and false positive rates and the

simulation results for an additional example to corroborate some of our findings are also reported in

Online Appendix.

6 Empirical Application

In our empirical analysis, we assess the forecastability of four key U.S. macroeconomic aggregates:

Gross Domestic Product, Exports, the GDP Deflator, and Housing Starts. The first two variables

are production-related, while the GDP Deflator reflects price movements. Housing Starts is included

due to its role in previous empirical work by Fan et al. [2023a], which found that combining factor and

sparse regression methods outperformed both PCR and LASSO in predicting Housing Starts in Northeast

United States. For our study, we analyze overall Housing Starts across the United States.

These variables, along with their predictors, are obtained from the FRED-QD dataset, published by

Clark & McCracken [2023]. The target variables—Gross Domestic Product, Exports, the GDP Deflator,

and Housing Starts—correspond respectively to the dataset codes ‘GDPC1’, ‘EXPGSC1’, ‘GDPCTPI’,

and ‘HOUST’. Each series is transformed following the method by Hamilton & Xi [2024] to address non-

stationarity, a common challenge in macroeconomic data analysis as noted by Beveridge & Nelson [1981]

and Nelson & Plosser [1982]. All variables are standardized to account for the sensitivity of the 3PRF
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method to differences in scale, similar to the scaling sensitivity in PCR and LASSO. Standardization

ensures that no variable disproportionately influences the results due to its scale.

Prior to forecasting, both target and predictor data undergo partial transformations with respect to

a constant and four lags of the target variable, following the approach by Kelly & Pruitt [2015], Bai &

Ng [2008], Stock & Watson [2012]. This generates the following variables:

ÿt+h = yt+h − Ê (yt+h | yt, yt−1, yt−2, yt−3) ,

ẍt = xt − Ê (xt | yt, yt−1, yt−2, yt−3) ,

where Ê(· | Ω) denotes linear projection on Ω and a constant. As a consequence of these transformations,

some observations are lost, leading to a dataset spanning from 1963:Q3 to 2019:Q3. The COVID-19

period is deliberately excluded due to its outlier nature, rendering it unforecastable. Our forecasting

horizon spans one quarter (h = 1) to one year (h = 4).

The determination of the number of factors in PCR is based on the eigenvalue ratio method introduced

by Ahn & Horenstein [2013], yielding one factor for all training samples. This aligns with the findings

of Kelly & Pruitt [2015], who also observed one factor using the information criteria by Bai & Ng [2002]

in their dataset. Since the number of target-relevant factors is equal to or fewer than those that drive

the set of predictors, we use one factor for our 3PRF forecasts. Also, as argued in Remark 1, choosing a

single factor may be a prudent choice under many circumstances.

We employ a recursive window approach to construct out-of-sample forecasts of the aforementioned

series similar to Kelly & Pruitt [2015] and present OOS R-squared values for different methods. The

initial training sample (which expands recursively) spans the following time periods, 1963:Q3 - 1997:Q3,

encompassing 60 percent of the total observations.

For LASSO regression, whether implemented as a standalone method or as an auxiliary regression

in 3PRF LASSO and PCR LASSO, we use a 10-fold cross-validation technique to estimate parameters

within each training sample, following the methodology outlined in Fan et al. [2020]. The results are

presented in Table 7. We forecast four variables across four horizons, yielding a total of 16 comparisons

(i.e., across four variables and four horizons).

In each of these comparisons, 3PRF LASSO and PCR LASSO consistently outperform the standard

3PRF and PCR methods. Additionally, the standalone LASSO method emerges as the best performer

in only two out of the sixteen instances, and even then, by a narrow margin. This underscores the utility

of combining sparse and dense regression techniques for forecasting macroeconomic variables.

Out of the sixteen combinations, 3PRF LASSO emerges as the best-performing method in nine cases

and the second-best in five, with only two instances where it does not feature among the top two methods.

Furthermore, it closely trails the second-best method in these two instances, underscoring its reliability.

Overall, 3PRF LASSO proves to be a robust forecasting technique for high-dimensional datasets,
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especially where both factor structure and sparsity are likely to be present.

7 Conclusion

Our paper extends the framework developed in Kelly & Pruitt [2015] by addressing two critical aspects

of factor-based forecasting models: accommodating weak factors and leveraging potentially informative

idiosyncratic components by incorporating them as additional regressors (in addition to factors) through

a penalized regression (LASSO). From a theoretical standpoint, our contribution lies in demonstrating

how the weakness of factors impacts the convergence rate of the estimator, leading to slower rates as

relevant factors become less pervasive. Importantly, we establish that when relevant factors are stronger

than irrelevant ones, 3PRF achieves a faster convergence rate to the infeasible best forecast compared

to PCR. This advantage arises because 3PRF can isolate and utilize relevant factors more effectively in

the presence of irrelevant ones.

Allowing idiosyncratic components to have predictive power for the target and, by extension, the

proxies (which have a similar DGP as the target) necessitates expanding the underlying model assump-

tions. We show that, under mild assumptions, this extension does not impose any penalty on convergence

rates. If factors are strong, as in Kelly & Pruitt [2015], the convergence rate of 3PRF within a framework

where idiosyncratic dependence is allowed would be identical to the case where idiosyncratic dependence

is absent, i.e., the setting in the paper by Kelly & Pruitt [2015]. This result underscores the robustness

of 3PRF in adapting to more general DGPs without sacrificing theoretical efficiency.

On the methodological front, we enhance 3PRF by incorporating a Stage 2 LASSO regression to

capture predictive content from idiosyncratic components. This integration allows the model to effec-

tively utilize residual variation that is not explained by common factors. Our empirical analysis, using

macroeconomic data, highlights the practical significance of this extension, demonstrating substantial

improvements in the predictability of key macroeconomic variables when idiosyncratic information is

included.
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Table 1: OOS R-squared across competing methods

Kf = 1, Kg = 4 N = 100, T = 100 ψf = 1, ψg = 1

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61963 0.35711 0.35713 0.50183 0.483 0.50297

0.3 0.9 0.3 0 0.61963 0.34567 0.36254 0.48815 0.41808 0.4941

0.3 0.9 0.3 1 0.65218 0.2887 0.38393 0.52197 0.50523 0.53013

0.3 0.9 0.9 0 0.62498 0.32803 0.35824 0.49378 0.41771 0.49123

0.3 0.9 0.9 1 0.64927 0.27884 0.37397 0.5074 0.51562 0.5142

0.9 0.3 0.3 0 0.61978 0.36505 0.34815 0.49502 0.38609 0.50948

0.9 0.3 0.3 1 0.6419 0.31822 0.39491 0.52705 0.53859 0.52448

0.9 0.3 0.9 0 0.617 0.39879 0.38352 0.52131 0.52027 0.53489

0.9 0.3 0.9 1 0.64385 0.33854 0.41707 0.53639 0.54622 0.54224

Notes: Kf , Kg , ρf ρg, a , d ψf , ψg are defined in Section 5. Oracle denotes the infeasible regression,

as described in Section 5. PCR denotes the regression of y on first ‘K ′ principal components, where

K = Kf + Kg. 3PRF denotes the auto-proxy 3PRF with Kf auto-proxies. LASSO denotes the the

LASSO regression of y on X. 3PRF+L is 3PRF LASSO procedure where Stage 1 (3PRF) uses Kf

proxies. PCR+L is analogously a 2 Stage regression where Stage 1 is PCR involving leading K = Kf+Kg

PCs as predictors, and Stage 2 is a LASSO regression involving the idiosyncratic components estimated

using principal component method. The highest R2 value across competing methods in in bold.

Table 2: OOS R-squared across competing methods

Kf = 1, Kg = 4 N = 100, T = 100 ψf = 1, ψg = 0.7

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61586 0.35254 0.3763 0.44874 0.43334 0.45638

0.3 0.9 0.3 0 0.61272 0.34334 0.37507 0.4475 0.32952 0.46164

0.3 0.9 0.3 1 0.64204 0.34798 0.40109 0.51072 0.50934 0.5275

0.3 0.9 0.9 0 0.61562 0.34182 0.37569 0.43835 0.42262 0.47136

0.3 0.9 0.9 1 0.65034 0.35345 0.41414 0.53489 0.53643 0.55218

0.9 0.3 0.3 0 0.61676 0.40086 0.43177 0.5093 0.4897 0.52916

0.9 0.3 0.3 1 0.6445 0.38991 0.45023 0.54269 0.55545 0.56651

0.9 0.3 0.9 0 0.6191 0.40294 0.42346 0.49675 0.41185 0.49669

0.9 0.3 0.9 1 0.64742 0.38952 0.45598 0.56103 0.56505 0.56816

Notes: See Table 1
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Table 3: OOS R-squared across competing methods

Kf = 1, Kg = 4 N = 100, T = 100 ψf = 0.7, ψg = 1

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61984 0.25428 0.042604 0.3525 0.3717 0.36652

0.3 0.9 0.3 0 0.6142 0.21833 -0.0001 0.3204 0.30434 0.31485

0.3 0.9 0.3 1 0.6526 -0.039526 0.042867 0.25753 0.18481 0.14079

0.3 0.9 0.9 0 0.60923 0.19586 -0.020731 0.31079 0.3338 0.30475

0.3 0.9 0.9 1 0.65025 -0.016048 0.050238 0.2339 0.053706 0.14786

0.9 0.3 0.3 0 0.62011 0.24858 0.014442 0.35448 0.34412 0.36225

0.9 0.3 0.3 1 0.64539 0.012379 0.067817 0.24279 0.17838 0.16922

0.9 0.3 0.9 0 0.60969 0.17364 0.024531 0.34554 0.35578 0.34891

0.9 0.3 0.9 1 0.65026 0.010274 0.078063 0.25798 0.13377 0.18915

Notes: See Table 1

Table 4: OOS R-squared across competing methods

Kf = 1, Kg = 4 N = 100, T = 100 ψf = 0.7, ψg = 0.7

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61494 0.27246 0.31847 0.31304 0.34248 0.35345

0.3 0.9 0.3 0 0.61829 0.2715 0.32075 0.31823 0.34769 0.36768

0.3 0.9 0.3 1 0.64903 0.039788 0.23694 0.2993 0.25044 0.24138

0.3 0.9 0.9 0 0.6153 0.28658 0.3367 0.33782 0.36746 0.37318

0.3 0.9 0.9 1 0.65476 0.064438 0.25242 0.28539 0.20769 0.2527

0.9 0.3 0.3 0 0.61824 0.321 0.3625 0.36587 0.35551 0.3989

0.9 0.3 0.3 1 0.65205 0.066997 0.23593 0.2994 0.23966 0.23904

0.9 0.3 0.9 0 0.61817 0.27051 0.35604 0.34206 0.32838 0.38636

0.9 0.3 0.9 1 0.64375 0.051624 0.21217 0.25925 0.18316 0.21405

Notes: See Table 1
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Table 5: OOS R-squared across competing methods

Kf = 1, Kg = 5 N = 100, T = 100 ψf = 1, ψg = 1

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61952 0.35065 0.36033 0.49697 0.45746 0.50415

0.3 0.9 0.3 0 0.61747 0.32665 0.35071 0.47532 0.3951 0.48162

0.3 0.9 0.3 1 0.64156 0.24943 0.35685 0.49404 0.46676 0.48814

0.3 0.9 0.9 0 0.61054 0.31013 0.33968 0.46534 0.30602 0.46885

0.3 0.9 0.9 1 0.64935 0.25122 0.3529 0.50154 0.48852 0.50764

0.9 0.3 0.3 0 0.61706 0.39123 0.38815 0.52875 0.38402 0.5384

0.9 0.3 0.3 1 0.65268 0.31479 0.40096 0.53045 0.54751 0.52677

0.9 0.3 0.9 0 0.62003 0.39536 0.38733 0.52423 0.40492 0.53273

0.9 0.3 0.9 1 0.64097 0.31841 0.38816 0.52378 0.52466 0.51459

Notes: See Table 1

Table 6: OOS R-squared across competing methods

Kf = 1, Kg = 4 N = 200, T = 100 ψf = 1, ψg = 1

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.62649 0.37007 0.36536 0.49511 0.251 0.5001

0.3 0.9 0.3 0 0.61362 0.31505 0.33425 0.44706 0.23926 0.43754

0.3 0.9 0.3 1 0.64683 0.29327 0.3462 0.51792 0.3642 0.5174

0.3 0.9 0.9 0 0.61788 0.32355 0.33426 0.44939 0.25414 0.4643

0.3 0.9 0.9 1 0.64526 0.28446 0.34314 0.48878 0.35585 0.50658

0.9 0.3 0.3 0 0.61543 0.40231 0.38629 0.51894 0.33766 0.52398

0.9 0.3 0.3 1 0.64284 0.3531 0.38736 0.52788 0.39192 0.54455

0.9 0.3 0.9 0 0.61923 0.39344 0.37964 0.51337 0.32802 0.52474

0.9 0.3 0.9 1 0.64907 0.34188 0.38216 0.53225 0.49887 0.55153

Notes: See Table 1
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Table 7: Forecasting performance of different models

One Quarter Ahead Forecast, OOS R2(%)

Target Variable PCR 3PRF LASSO PCR-LASSO 3PRF-LASSO

GDP 3.27 4.56 16.87∗∗ 12.79 17.05∗

Exports −1.36 −2.24 −1.90 4.96∗∗ 6.66∗

Housing Starts −22.83 −27.61 18.60∗ 14.90∗∗ 14.73

GDP Deflator 0.04 0.84 5.58 8.90∗∗ 9.95∗

Two Quarters Ahead Forecast, OOS R2(%)

GDP 7.14 9.04 41.99∗∗ 42.88∗ 41.13

Exports 1.13 1.15 19.08 31.97∗ 24.23∗∗

Housing Starts −25.08 −34.74 32.29∗∗ 15.02 37.65∗

GDP Deflator −1.04 2.19 32.52 40.38∗ 37.75∗∗

Three Quarters Ahead Forecast, OOS R2(%)

GDP 9.85 13.28 58.84∗∗ 57.03 59.63∗

Exports 3.55 3.86 46.23 54.31∗ 53.23∗∗

Housing Starts −20.32 −32.13 16.40∗∗ 4.22 25.78∗

GDP Deflator −5.02 −0.22 15.48 31.33∗ 27.24∗∗

One Year Ahead Forecast, OOS R2(%)

GDP 12.20 17.59 69.99∗ 67.18 68.45∗∗

Exports 6.62 7.36 52.55 57.14∗∗ 58.97∗

Housing Starts −10.08 −14.13 16.39∗∗ 11.68 19.50∗

GDP Deflator −9.25 −0.45 20.45 24.42∗∗ 27.76∗

Notes: The highest two entries have been put in bold. In each row, entry marked with * is the highest

entry and entry marked with ** is the second highest entry.
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Appendix A

This Appendix A is organized as follows. Section A1 provides supplementary lemmas that are used

throughout the proofs. Section A2 includes proofs of Theorems 1(a), 2, 3(a), and 4(a), covering stage 1

results of 3PRF-Lasso for the cases when γ = 0, and ζ = 0. The lemmas used in these proofs are also

contained in Section A2. Section A3 addresses Theorems 1(b), 3(b), and 4(b), which focus on stage 1

results of 3PRF-Lasso for γ ̸= 0 and ζ ̸= 0. Section A4 presents the stage 2 results of 3PRF-Lasso, i.e.,

the proof of Theorem 5 and the supporting lemmas for this proof. Additional Simulation results are in

the Online Appendix B. We refer to this as Appendix A and label the sections within it as A1–A4 to

differentiate them from the Online Appendix B, which we refer to as Online Appendix B, with sections

labeled B1–B2.

A1 Supplementary Lemmas

Lemma 1. Under Assumptions 2-3, for all s, t, i,m,m1,m2 and v = f, g the following results hold.

1. E
∣∣∣(NT )−1/2

∑
i,s Fs(m) [εisεit − σii,st]

∣∣∣2 ≤M .

2. E
∣∣∣(NT )−1/2

∑
i,s ωs(m) [εisεit − σii,st]

∣∣∣2 ≤M .

3. N−1/2T−1/2
∑
i,t εit = Op(1), N−1/2

∑
i εit = Op(1) and T−1/2

∑
t εit = Op(1).

4. T−1/2
∑
t ηt+h = Op(1).

5. T−1/2
∑
t Ft(m)ηt+h = Op(1) and T−1/2

∑
t ωt(m)ηt+h = Op(1).

6. N−1/2T−1/2
∑
i,t εitηt+h = Op(1).

7. N−ψv/2T−1
∑
i,t ϕiv (m1) εitFt (m2) = Op(1).

8. N−ψv/2T−1
∑
i,t ϕiv (m1) εitωt (m2) = Op(1).

9. N−ψv/2T−1/2
∑
i,t ϕiv(m)εitηt+h = Op(1).

10. (a) N−1T−1/2
∑
i,s εisεit = Op

(
δ−1
NT

)
and (b) N−1/2T−1

∑
i,t εitεjt = Op

(
δ−1
NT

)
.

11. N−1T−3/2
∑
i,s,t εisεitηt+h = Op

(
δ−1
NT

)
.

12. N−1T−1/2
∑
i,s Fs(m)εisεit = Op

(
δ−1
NT

)
.

13. N−1T−1/2
∑
i,s ωs(m)εisεit = Op

(
δ−1
NT

)
.

14. N−1T−1
∑
i,s,t Fs(m)εisεitηt+h = Op(1).

15. N−1T−1
∑
i,s,t ωs(m)εisεitηt+h = Op(1).
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16. N−ψv/2T−1
∑
i,t ϕiv(m)εitεjt = Op

(
Γ−1
NvT

)
.

The stochastic order is understood to hold asN,T → ∞, δNT ≡ min(
√
N,

√
T ), ΓNvT ≡ min(

√
Nψv ,

√
T ).

Proof : Item 1-4, 6 10(a) and 11-15 have been proved in Kelly & Pruitt [2015], Auxiliary Lemma 1. We

prove the rest below.

Item 5: Given Assumption 2.5, we have that

E

∣∣∣∣∣T−1/2
∑
t

Ft(m)ηt+h

∣∣∣∣∣
2

= T−1
∑
t

E
[
η2t+h

]
E
[
Ft(m)2

]
≤ T−1

∑
t

δηM

= O(1)

by Assumption 2.1 and 2.5. Therefore,

T−1/2
∑
t

Ft(m)ηt+h = Op(1),

and similarly, ∑
t

ωt(m)ηt+h = Op(1)

using Assumption 2.4, 2.5.

Item 7: For v ∈ {f, g} , Using the Cauchy Schwartz inequality,

N−ψv/2T−1
∑
i,t

ϕiv(m1)εitFt(m2) ≤

(
T−1

∑
t

Ft(m2)
2

)1/2
T−1

∑
t

[
N−ψv/2

∑
i

ϕiv (m) εit

]21/2

= Op(1)Op(1)

by Assumptions 3.7 and 2.1.

Item 8: v ∈ {f, g}, Using the Cauchy Schwartz inequality,

N−ψv/2T−1
∑
i,t

ϕiv(m1)εitωt(m2) ≤

(
T−1

∑
t

ωt(m2)
2

)1/2
T−1

∑
t

[
N−ψv/2

∑
i

ϕiv (m) εit

]21/2

= Op(1)Op(1)

by Assumptions 3.7 and 2.4.

Item 9 :Since E [ηt+1ηs+1] = 0 for t ̸= s and ηt+h is independent of ϕi(m) and εi,t, ∀i, t for any h > 0 by
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Assumption 2.5, we have,

E

∣∣∣∣∣∣N−ψv/2T−1/2
∑
i,t

ϕi(m)εitηt+h

∣∣∣∣∣∣
2

= N−ψvT−1
∑
i,j,t

E
[
ϕi(m)ϕj(m)εitεjtη

2
t+h

]

= T−1
∑
t

E
[
η2t+h

]
E

(N−ψv/2
∑
i

ϕi(m)εit

)2


= Op(1)Op(1).

Last line follows from from Assumptions 3.7 and 2.5.

Item 10(b):

N−1/2T−1
∑
i,t

εitεjt =N
−1/2T−1

∑
i,t

[εitεjt − σij,tt] +N−1/2T−1
∑
i,t

σij,tt

=Op

(
T−1/2

)
+Op

(
N−1/2

)

by Assumption 3.2(b) and 3.1(d).

Item 16 : We have,

N−ψv/2T−1
∑
i,t

ϕiv(m)εitεjt =T
−1/2

N−ψv/2T−1/2
∑
i,t

ϕiv(m) [εitεjt − σij,tt]


+N−ψv/2

T−1
∑
i,t

ϕiv(m)σij,tt


=16.I + 16.II.

16.I is Op(T
−1/2) by Assumption 3.3.

16.II is Op(N
−ψv/2) since E

∣∣∣T−1
∑
i,t ϕiv(m)σij,tt

∣∣∣ ≤ maxi E |ϕiv(m)|T−1
∑
i,t |σij,tt| = Op(1) by As-

sumption 2.2 and 3.1(d). Hence, N−ψv/2T−1
∑
i,t ϕiv(m)εitεjt = Op

(
Γ−1
NvT

)
.

Lemma 2. Under Assumption(s) 2-3, we have the following

1. T−1/2F ′JTω = Op(1).

2. T−1/2F ′JTη = Op(1).

3. T−1/2ε′JTη = Op(1).

4. N−ψf ε′tJNΦ = Op

(
N

−ψf
2 ∨N−ψf+

ψg
2

)
.

5. N−ψfT−1Φ′JNε′JTF = Op

(
Γ−1
NfT

∨ Nψg−ψf

ΓNgT

)
.

6. N−ψfT−1Φ′JNε′JTω = Op

(
Γ−1
NfT

∨ Nψg−ψf

ΓNgT

)
.
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7. N−ψfT−1/2Φ′JNε′JTη = Op

(
N

−ψf
2 ∨N−ψf+

ψg
2

)
.

8. N−1T−3/2F ′JTεJNε′JTF = Op

(
δ−1
NT

)
.

9. N−1T−3/2ω′JT εJNε′JTF = Op

(
δ−1
NT

)
.

10. N−1T−3/2ω′JT εJNε
′JTω = Op

(
δ−1
NT

)
.

11. N−1T−1/2F ′JT εJNεt = Op

(
δ−1
NT

)
.

12. N−1T−1/2ω′JT εJNεt = Op

(
δ−1
NT

)
.

13. N−1T−3/2η′JT εJNε
′JTF = Op

(
δ−1
NT

)
.

14. N−1T−3/2η′JT εJNε
′JTF = Op

(
δ−1
NT

)
.

Proof : Item 1-3 and 8-14 have been proved in Kelly & Pruitt [2015], Auxiliary Lemma 2. We prove the

rest below.

Expanding Item 4 we have,

N−ψf ε′tJNΦ =

[
N−ψf ε′tJNΦf Nψg−ψf

(
N−ψgε′tJNΦg

)]
.

mth element of N−ψf ε′tJNΦf is given by,

N−ψf/2

(
N−ψf/2

∑
i

εitϕif (m)−

(
N−1+ψf/2

∑
i

εit

)(
N−ψf

∑
i

ϕif (m)

))
= N−ψf/2(1.I + 1.II)

1.I : This term is Op(1) by Assumption 3.7.

1.II : Since N−1/2
∑
i εit = Op(1) by Lemma 1.3, we have N−1+

ψf
2

∑
i εit = Op(1) as

0 < ψf ≤ 1. By Assumption 2.2, N−ψf
∑
i ϕif (m) = Op(1). Hence, (I + II) is Op(1).

Therefore,

N−ψf ε′tJNΦf =N−ψf/2Op(1)

=Op

(
N−ψf/2

)
.

Similarly,

N−ψgε′tJNΦg = Op

(
N−ψg/2

)
,

which implies

N−ψf ε′tJNΦg = Op

(
Nψg−ψf ×N−ψg/2

)
.
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Hence, the whole matrix has the following order.

N−ψf ε′tJNΦ = Op

(
N−ψf/2 ∨N−ψf+ψg/2

)
.

Item 5 can be expanded as

N−ψfT−1Φ′JNε′JTF =

 N−ψfT−1Φ′
fJNε′JTF

N−ψf+ψg
(
N−ψgT−1Φ′

gJNε′JTF
)
 .

We show that N−ψfT−1Φ′
fJNε′JTF is Op

(
Γ−1
NfT

)
. By symmetry, N−ψgT−1Φ′

gJNε′JTF will be

Op

(
Γ−1
NgT

)
. Hence N−ψf+ψg

(
N−ψgT−1Φ′

gJNε′JTF
)
isOp

(
Nψg−ψf

ΓNgT

)
and therefore the whole matrix

is Op

(
Γ−1
NfT

∨ Nψg−ψf

ΓNgT

)
. Therefore, it’s sufficient to show N−ψfT−1Φ′

fJNε′JTF is Op

(
Γ−1
NfT

)
and

the stochastic order for the matrix follows. We show this below.

N−ψfT−1Φ′
fJNε′JTF is a Kf ×K matrix with generic (m1,m2) element given by,

N−ψfT−1
∑
i,t

ϕif (m1)Ft (m2) εit −N−ψf−1T−1
∑
i,j,t

ϕif (m1)Ft (m2) εjt

−N−ψfT−2
∑
j,s,t

Fs (m2)ϕjf (m1) εjt +N−ψf−1T−2
∑
i,j,s,t

Fs (m2)ϕif (m1) εjt

=5.I− 5.II− 5.III + 5.IV.

5.I is Op
(
N−ψf/2

)
by Lemma 1.7.

5.II is Op
(
T−1/2

)
since N−ψf

∑
i ϕif (m1) = Op(1) by Assumption 2.2 and

N−1
∑
j

(
T−1/2

∑
t Ft (m2) εjt

)
= Op(1) by Assumption 3.6.

5.III is Op
(
N−ψf/2

)
since T−1

∑
s Fs (m2) = Op(1) by Assumption 2.1 and

T−1
∑
t

(
N−ψf/2

∑
j ϕjf (m1) εjt

)
= Op(1) by Assumption 3.7.

5.IV is Op
(
T−1/2N−1/2

)
by Assumptions 2.1, 2.2 and Lemma 1.3.

Summing these terms, N−ψfT−1Φ′
fJNε′JTF is Op

(
Γ−1
NfT

)
.

Item 6 can be expanded as

N−ψfT−1Φ′JNε′JTω =

 N−ψfT−1Φ′
fJNε′JTω

N−ψf+ψg
(
N−ψgT−1Φ′

gJNε′JTω
)
 .

As in the case of Item 5, it suffices to show that N−ψfT−1Φf
′JNε′JTω is Op

(
Γ−1
NfT

)
.
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N−ψfT−1Φf
′JNε′JTω is a Kf × L matrix with generic (m1,m2) element given by,

N−ψfT−1
∑
i,t

ϕif (m1)ωt (m2) εit −N−ψf−1T−1
∑
i,j,t

ϕif (m1)ωt (m2) εjt

−N−ψfT−2
∑
j,s,t

ωs (m2)ϕjf (m1) εjt +N−ψf−1T−2
∑
i,j,s,t

ωs (m2)ϕif (m1) εjt

=6.I− 6.II− 6.III + 6.IV.

6.I is Op
(
N−ψf/2

)
by Lemma 1.8.

6.II is Op
(
T−1/2

)
since N−ψf

∑
i ϕif (m1) = Op(1) by Assumption 2.2 and

N−1
∑
j

(
T−1/2

∑
t ωt (m2) εjt

)
= Op(1) by Assumption 3.5.

6.III is Op
(
N−ψf/2T−1/2

)
since T−1/2

∑
s ωs (m2) = Op(1) by Assumption 2.4

and T−1
∑
t

(
N−ψf/2

∑
j ϕjf (m1) εjt

)
= Op(1) by Assumption 3.7.

6.IV is Op
(
T−1N−1/2

)
by Assumption 2.2, 2.4 and Lemma 1.3.

Summing these terms ,we have that N−ψfT−1Φf
′JNε′JTω is Op

(
Γ−1
NfT

)
.

Item 7: Similar to arguments presented in the case of Item 5 and 6, to show thatN−ψfT−1/2Φ′JNε′JTη

is Op

(
N

−ψf
2 ∨N−ψf+

ψg
2

)
, it suffices to show that N−ψfT−1/2.Φf

′JNε′JTη is Op

(
N

−ψf
2

)
. We show

this below.

mth element of N−ψfT−1/2Φf
′JNε′JTη is given by,

N−ψfT−1/2
∑
i,t

ϕif (m)εitηt+h −N−ψfT−3/2
∑
i,s,t

ϕif (m)εitηs+h

−N−ψf−1T−1/2
∑
i,j,t

ϕif (m)εjtηt+h +N−ψf−1T−3/2
∑
i,j,s,t

ϕif (m)εjtηs+h

=7.I− 7.II− 7.III + 7.IV.

7.I is Op(N
−ψf/2) by Lemma 1.9.

7.II can be written as

N−ψf/2

(
T−1

∑
t

[
N−ψf/2

∑
i

ϕif (m)εit

])(
T−1/2

∑
s

ηs+h

)
.

This is Op(N
−ψf/2) by Assumption 3.7 and Lemma 1.4.

7.III can be written as

(
N−ψf

∑
i

ϕif (m)

)N−1/2T−1/2
∑
j,t

εjtηt+h

(N−1/2
)

= Op(1)Op(1)
(
N−1/2

)
.
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This follows from Assumption 2.2 and Lemma 1.6.

7.IV can be written asN−1/2T−1/2
∑
j,t

εjt

(T−1/2
∑
s

ηs+h

)(
N−ψf

∑
i

ϕif (m)

)(
N−1/2 × T−1/2

)
= Op(1)Op(1)Op(1)

(
N−1/2 × T−1/2

)
= Op

(
N−1/2 × T−1/2

)
.

This follows from Assumption 2.2 Lemma 1.3 and 1.4.

Summing these terms, N−ψfT−1/2Φf
′JNε′JTη is Op(N

−ψf/2).

Lemma 3. Under Assumptions 2-3, we have,

1. N−2ψfT−1Φ′JNε′JT εJNΦ = Op

(
N−ψf/2Γ−1

NfT
∨ N2(ψg−ψf )

Nψg/2ΓNgT

)
.

2. N−2ψfT−2Φ′JNε′JTεJNε′JTF = Op

(
T−1/2N−

3ψf
2 +1δ−1

NT ∨ N2(ψg−ψf )

T 1/2N
3ψg
2 −1δNT

)
.

3. N−2ψfT−2Φ′JNε
′JT εJNε′JTω = Op

(
T−1/2N−

3ψf
2 +1δ−1

NT ∨ N2(ψg−ψf )

T 1/2N
3ψg
2 −1δNT

)
.

4. N−2ψfT−3F ′JT εJNε
′JT εJNε

′JTF = Op

((
N1−ψf
√
TδNT

)2
)
.

5. N−2ψfT−3F ′JT εJNε′JT εJNε′JTω = Op

((
N1−ψf
√
TδNT

)2
)
.

6. N−2ψfT−3ω′JT εJNε
′JT εJNε′JTω = Op

((
N1−ψf
√
TδNT

)2
)
.

Proof : We prove 1-3 below .4-6 have been proved in Kelly & Pruitt [2015], Online Appendix, Lemma

Web. They show that N−2T−3F ′JT εJNε
′JT εJNε

′JTF , N−2T−3F ′JT εJNε′JT εJNε′JTω and

N−2T−3ω′JT εJNε
′JT εJNε′JTω are all Op

(
T−1δ−2

NT

)
. Therefore changing N−2 in the normalization

term by N−2ψf gives the stochastic orders as listed in Lemma 3 above.

Item 1 is K ×K matrix given as,

N−2ψfT−1Φ′JNε′JT εJNΦ =

N−2ψfT−1Φ′
fJNε′JTεJNΦf N−2ψfT−1Φ′

fJNε′JTεJNΦg

N−2ψfT−1Φ′
gJNε′JTεJNΦf N−2ψfT−1Φ′

gJNε′JTεJNΦg

 .

First, We show that N−2ψfT−1Φ′
fJNε′JTεJNΦf is Op

(
N−ψf/2Γ−1

NfT

)
.
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N−2ψfT−1Φ′
fJNε′JTεJNΦf has generic (m1,m2) element given as

N−2ψfT−1
∑
i,j,t

ϕfi (m1) εitεjtϕfj (m2)−N−2ψf−1T−1
∑
i,j,k,t

ϕfi (m1) εitεjtϕfk (m2)

−N−2ψf−1T−1
∑
i,j,k,t

ϕfi (m1) εjtεktϕfk (m2) +N−2ψf−2T−1
∑

i,j,k,l,t

ϕfi (m1) εjtεktϕfl (m2)

−N−2ψfT−2
∑
i,j,s,t

ϕfi (m1) εisεjtϕfj (m2) +N−2ψf−1T−2
∑

i,j,k,s,t

ϕfi (m1) εisεjtϕfk (m2)

+N−2ψf−1T−2
∑

i,j,k,s,t

ϕfi (m1) εjsεktϕfk (m2)−N−2ψf−2T−2
∑

i,j,k,l,s,t

ϕfi (m1) εjsεktϕfl (m2)

= 1.I − · · · − 1. VIII.

1.I can be written as

N−ψf

T−1
∑
t

(
N−ψf/2

∑
i

ϕfi (m1) εit

)N−ψf/2
∑
j

ϕfj (m2) εjt


=Op

(
N−ψf

)
by Assumption 3.7.

1.II can be written as

N−ψf/2

N−1
∑
j

N−ψf/2T−1
∑
i,t

ϕfi (m1) εitεjt

(N−ψf
∑
k

ϕfk (m2)

)

=Op

(
N−ψf/2Γ−1

NfT

)

by lemma 1.16 and Assumption 2.2.

1.III is Op

(
N−ψf/2Γ−1

NfT

)
, proof is identical to 1.II.

1.IV can be written as

N−1/2

(
N−ψf

∑
i

ϕfi (m1)

)(
N−ψf

∑
l

ϕfl (m2)

)N−1
∑
k

N−1/2T−1
∑
j,t

εjtεkt


=N−1/2Op (1)Op (1)Op

(
δ−1
NT

)
=Op

(
δ−1
NTN

−1/2
)

by Assumption 2.2 and Lemma 1.10.

1.V is Op
(
N−ψf

)
. Identical to 1.I.
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1.VI can be written as

N
−ψf−1

2 T
−1
2

(
T−1

∑
s

N−ψf/2
∑
i

ϕfi (m1) εis

)

×

T−1/2N−1/2
∑
j,t

εjt

(N−ψf
∑
k

ϕfk (m2)

)

=N
−ψf−1

2 T
−1
2 Op(1)Op(1)Op(1)

=Op

(
N

−ψf−1

2 T
−1
2

)

by Assumption 2.2, 3.7 and Lemma 1.10.

1.VII is Op

(
N

−ψf−1

2 T
−1
2

)
. Identical to 1.VI

1.VIII can be written as

N−1T−1

(
N−ψf

∑
i

ϕfi (m1)

)N−1/2T−1/2
∑
js

εjs


×

(
N−1/2T−1/2

∑
kt

εkt

)(
N−ψf

∑
l

ϕfl (m2)

)

=N−1T−1Op (1)Op (1)Op (1)

=Op
(
N−1T−1

)
by Assumptions 2.2 and Lemma 1.3.

Summing all these terms gives us N−2ψfT−1Φ′
fJNε′JTεJNΦf is Op

(
N−ψf/2Γ−1

NfT

)
.

By a symmetrical argument N−2ψgT−1Φ′
gJNε′JTεJNΦg is Op

(
N−ψg/2Γ−1

NgT

)
.

Hence, N−2ψfT−1Φ′
gJNε′JTεJNΦg is Op

(
N2(ψg−ψf )

Nψg/2ΓNgT

)
.

It is also easy to see from the proof presented above, that, depending on whether ψf is greater, equal

to or less than ψg, N
−2ψfT−1Φ′

gJNε′JTεJNΦf is either Op

(
N−ψf/2Γ−1

NfT

)
(when ψf > ψg) or

Op

(
N2(ψg−ψf )

Nψg/2ΓNgT

)
(when ψf < ψg). When ψf = ψg, the two rates are equal.

Therefore, the matrix N−2ψfT−1Φ′JNε′JT εJNΦ is Op

(
N−ψf/2Γ−1

NfT
∨ N2(ψg−ψf )

Nψg/2ΓNgT

)
.

Item 2 is given by

N−2ψfT−2Φf
′JNε′JTεJNε′JTF =

N−2ψfT−2Φf
′JNε′JTεJNε′JTF

N−2ψfT−2Φg
′JNε′JTεJNε′JTF

 .

We first show (below) that Kf ×K matrix N−2ψfT−2Φf
′JNε′JTεJNε′JTF is Op

(
N−ψf/2Γ−1

NfT

)
.
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The matrix N−2ψfT−2Φf
′JNε′JTεJNε′JTF has generic (m1,m2) element,

N−2ψfT−2
∑
i,j,s

ϕjf (m1) εjtεitεisFs (m2)−N−2ψfT−3
∑

i,j,s,t,u

ϕjf (m1) εjuεiuεitFs (m2)

−N−2ψf−1T−2
∑

i,j,k,s,t

ϕkf (m1) εktεjtεisFs (m2) +N−2ψf−1T−3
∑

i,j,k,s,t,u

ϕkf (m1) εkuεjuεitFs (m2)

−N−2ψfT−3
∑

i,j,s,t,u

ϕjf (m1) εjuεitεisFs (m2) +N−2ψfT−4
∑

i,j,s,t,u,v

ϕjf (m1) εjvεiuεitFs (m2)

+N−2ψf−1T−3
∑

i,j,k,s,t,u

ϕkf (m1) εkuεjtεisFs (m2)−N−2ψf−1T−4
∑

i,j,k,s,t,u,v

ϕkf (m1) εkvεjuεitFs (m2)

−N−2ψf−1T−2
∑

i,j,k,s,t

ϕkf (m1) εjtεitεisFs (m2) +N−2ψf−1T−3
∑

i,j,k,s,t,u

ϕkf (m1) εjuεiuεitFs (m2)

+N−2ψf−2T−2
∑

i,j,k,l,s,t

ϕlf (m1) εktεjtεisFs (m2)−N−2ψf−2T−3
∑

i,j,k,l,s,t,u

ϕlf (m1) εkuεjuεitFs (m2)

+N−2ψf−1T−3
∑

i,j,k,s,t,u

ϕkf (m1) εjuεitεisFs (m2)−N−2ψf−1T−4
∑

i,j,k,s,t,u,v

ϕkf (m1) εjvεiuεitFs (m2)

−N−2ψf−2T−3
∑

i,j,k,l,s,t,u

ϕlf (m1) εkuεjtεisFs (m2) +N−2ψf−2T−4
∑

i,j,k,l,s,t,u,v

ϕlf (m1) εkvεjuεitFs (m2)

= 2.I− · · · − 2.XVI.

2.I Using Cauchy Schwartz inequality, this term is bounded by

N−
3ψf
2 +1T−1/2

T−1
∑
t

[N−ψf/2
∑
j

ϕjf (m1) εjt]
2

 1
2
T−1

∑
t

[N−1T−1/2
∑
i,s

εisFs (m2) εit]
2

 1
2

=N−
3ψf
2 +1T−1/2Op(δ

−1
NT )Op(1)

=Op(T
−1/2N−

3ψf
2 +1δ−1

NT )

by Lemma 1.12 and Assumption 3.7.

2.II: Using Cauchy Schwartz inequality, this term is bounded by,

N−
3ψf
2 +1T−1/2

T−1
∑
u

[N−ψf/2
∑
j

ϕjf (m1) εju]
2

 1
2
T−1

∑
u

[N−1T−1/2
∑
i,t

εitεiu]
2

 1
2

×

(
T−1

∑
s

Fs (m2)

)
.

This is Op(δ
−1
NTT

−1/2N−
3ψf
2 +1) by Lemma 1.10(b), Assumption 2.1 and 3.7.
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2.III can be written as

N−
3ψf
2 +1T−1/2

N−ψf
∑
k

ϕkf (m1)

N−1/2T−1
∑
j,t

εktεjt


×

(
N−1

∑
i

T−1/2
∑
s

εisFs (m2)

)
.

This is equal to N
1
2−ψfT−1/2Op(δ

−1
NT )Op(1) which is Op(δ

−1
NTT

−1/2N
1
2−ψf ) by Lemma 1.10(b) and As-

sumption 2.2 and 3.6.

2.IV can be written as

N−
3ψf+1

2 T−1/2

N−1
∑
j

N−ψf/2T−1
∑
k,u

ϕkf (m1) εkuεju


×

N−1/2T−1/2
∑
i,t

εit

(T−1
∑
s

Fs (m2)

)
.

This is Op(Γ
−1
NfT

N−
3ψf+1

2 T−1/2) by Lemma 1.3 and 1.16 , Assumption 2.1.

2.V can be written as

N−
3ψf
2 +1T−1/2

T−1
∑
u

N−ψf/2
∑
j=1

ϕjf (m1) εju


×

T−1
∑
t

N−1T−1/2
∑
i,s

Fs(m2)εisεit

 .

This is Op(δ
−1
NTT

−1/2N−
3ψf
2 +1) by Assumption 3.7 and Lemma 1.12.

2.VI can be written as

N−
3ψf
2 +1T−1/2

T−1
∑
v

N−ψf/2
∑
j

ϕjf (m1) εjv


×

T−1
∑
t

N−1T−1/2
∑
i,u

εiuεit

(T−1
∑
s

Fs (m2)

)
.

This is Op(δ
−1
NTN

−
3ψf
2 +1T−1/2) by Assumption 2.1, 3.7 and Lemma 1.10.

2.VII can be written as

N−
3ψf+1

2 T−1

(
T−1

∑
u

N−ψf/2
∑
k

ϕkf (m1) εku

)

×

N−1/2T−1/2
∑
j,t

εjt

(N−1
∑
i

T−1/2
∑
s

εisFs (m2)

)
.
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This is Op(N
−

3ψf+1

2 T−1) by Assumption 3.6, 3.7 and Lemma 1.3.

2.VIII can be written as

N−
3ψf
2 T−1

(
T−1

∑
v

N−ψf/2
∑
k

ϕkf (m1) εkv

)N−1/2T−1/2
∑
j,u

εju


×

N−1/2T−1/2
∑
i,t

εit

(T−1
∑
s

Fs (m2)

)
.

This is Op(N
−

3ψf
2 T−1) by Assumption 3.6 and Lemma 1.3.

2.IX: Using Cauchy Schwartz, this term is bounded by

N−ψf+ 1
2T−1/2

(
N−ψf

∑
k

ϕkf (m1)

)T−1
∑
t

N− 1
2

∑
j

εjt

2


1/2

×

T−1
∑
t

N−1T− 1
2

∑
i,s

Fs(m2)εisεit

1/2

,

which is Op(N
−ψf+ 1

2T−1/2δ−1
NT ) by Lemma 1.3, Lemma 1.14 and Assumption 2.2.

2.X: Using Cauchy Schwartz, this term is bounded by

N−ψf+ 1
2T−1/2

(
N−ψf

∑
k

ϕkf (m1)

)T−1
∑
u

N− 1
2

∑
j

εju

2


1/2

×

T−1
∑
u

N−1T− 1
2

∑
i,t

εiuεit

1/2

,

which is Op(N
−ψf+ 1

2T−1/2δ−1
NT ) by Assumptions 2.1, 2.2, Lemma 1.3 and Lemma 1.10.

2.XI can be written as

N−ψf+ 1
2T−1/2

(
N−ψf

∑
l

ϕlf (m1)

)N−1
∑
j

N− 1
2T−1

∑
k,t

εjtεkt


×

(
N−1

∑
i

T−1/2
∑
s

εisFs (m2)

)
.

This is Op(N
−ψf+ 1

2T−1/2δ−1
NT ) by Assumptions 2.2, 3.6 and Lemma 1.10.
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2.XII can be written as

N−ψfT−1/2

(
N−ψf

∑
l

ϕlf (m1)

)N−1
∑
k

N− 1
2T−1

∑
j,u

εjuεku


×

(
N− 1

2T− 1
2

∑
t,t

εit

)(
T−1

∑
s

Fs (m2)

)
.

This is Op(N
−ψfT−1/2δ−1

NT ) by Assumption 2.2, 2.3 and Lemma 1.10.

2.XIII Using Cauchy Schwartz, this term is bounded by

N−ψf+1/2T−1/2

(
N−ψf

∑
k

ϕkf (m1)

)N−1/2T−1/2
∑
j,u

εju


×

(
N−1

∑
i

[T−1/2
∑
t

ε2it]

)1/2(
N−1

∑
i

[T−1/2
∑
s

εisFs (m2)]
2

)1/2

,

which is Op(N
−ψf+1/2T−1/2δ−1

NT ) by Assumption 2.2, 3.6 and Lemma 1.3.

2.XIV can be written as

N−ψf+1/2T−1/2

(
N−ψf

∑
k

ϕkf (m1)

)N−1/2T−1/2
∑
i,t

εit


×

N−1
∑
u

N−1/2T−1
∑
i,t

εitεiu

(T−1
∑
s

Fs (m2)

)
.

This is Op(N
−ψfT−1/2δ−1

NT ) by Assumption 2.2, 2.3, Lemma 1.3 and 1.10.

2.XV can be written as

N−ψfT−3/2

(
N−ψf

∑
l

ϕlf (m1)

)N−1/2T−1/2
∑
k,u

εku


×

N−1/2T−1/2
∑
j,t

εjt

(N−1
∑
i

T−1/2
∑
s

εisFs (m2)

)
.

This is Op(N
−ψfT−3/2) by Assumption 2.2, 3.6 and Lemma 1.3.

2.XVI can be wriiten as

N−ψf− 1
2T−3/2

(
N−ψf

∑
l

ϕlf (m1)

)N−1/2T−1/2
∑
k,v

εkv


×

N−1/2T−1/2
∑
j,u

εju

N−1/2T−1/2
∑
i,t

εit

(T−1
∑
s

Fs (m2)

)
.

This is Op(N
−ψf− 1

2T−3/2) by Assumption 2.1, 2.2, Lemma 1.3.
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Since 0 < ψf ≤ 1, the initial terms dominate the order. Thus, summing all these terms yields:

N−2ψfT−2Φ′
fJNε′JTεJNε′JTF = Op

(
T− 1

2N−
3ψf
2 +1δ−1

NT

)
.

By a symmetrical argument, we have:

N−2ψgT−2Φ′
gJNε′JTεJNε′JTF = Op

(
T− 1

2N− 3ψg
2 +1δ−1

NT

)
.

Hence, we can conclude that:

N−2ψfT−2Φ′
gJNε′JTεJNε′JTF = Op

(
N2(ψg−ψf )

T 1/2N
3ψg
2 −1δNT

)
.

Therefore, we have:

N−2ψfT−2Φ′JNε′JTεJNε′JTF = Op

(
T− 1

2N−
3ψf
2 +1δ−1

NT ∨ N2(ψg−ψf )

T 1/2N
3ψg
2 −1δNT

)
.

Item 3 is K ×M matrix and the proof follows the same logic as Item 2, replacing Fs (m2) by ωs (m2).

A2 Proofs of Theorem 1(a), 2, 3(a) and 4(a)

We introduce 2 Lemmas which are utilized in proofs of stage 1 results of 3PRF-Lasso for the cases when

γ = 0, and ζ = 0. The proofs are presented subsequent to these Lemmas.

Lemma 4. Recall, Ξ−1
NT ≡ T−1/2 ∨N−ψf/2 ∨

(
Nψg−ψf

ΓNgT

)
which is equivalent to

T−1/2 ∨N−ψf/2 ∨N−ψf+ψg/2 ∨
(
Nψg−ψf
√
T

)
.

Under Assumptions 1- 6, if
N1−ψf
√
T

= O(1), if γ = 0, and ζ = 0, we have,

1. F̂A = T−1Z ′JTZ = Λf∆fΛ
′
f +∆ω +Op(T

−1/2).

2. F̂B = N−ψfT−2Z ′JTXJNX ′JTZ = Λf∆fPf∆fΛ
′
f +Op

(
Ξ−1
NT

)
.

3. F̂C,t = N−ψfT−1Z ′JTXJNxt = N−ψfT−1Z ′JTXJNϕ0 +Λf∆fPff t +Op

(
Ξ−1
NT

)
.

Furthermore, the probability limits of Φ̂
′
and F̂ t are

Φ̂
′ p−→
T→∞

(
Λf∆fΛ

′
f +∆ω

)−1
Λf∆fΦ

′
f ,

and
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F̂ t
p−→

T,N→∞

(
Λf∆fΛ

′
f +∆ω

) (
Λf∆fPf∆fΛ

′
f

)−1 (
N−ψfT−1Z ′JTXJNϕ0 +Λf∆fPff t

)
.

Proof:

First we note that

N−ψfΦ′JNΦ =

N−ψfΦf
′JNΦf N−ψfΦf

′JNΦg

N−ψfΦg
′JNΦf Nψg−ψf

(
N−ψgΦg

′JNΦg

)


= Op

(
1 ∨Nψg−ψf

)
. (A2.1)

The final equality follows from Assumption 2.2 and 4.1.

Item 1 :

F̂A =T−1Z ′JTZ

=Λ
(
T−1F ′JTF

)
Λ′ +Λ

(
T−1F ′JTω

)
+
(
T−1ω′JTF

)
Λ′ + T−1ω′JTω

=Λ∆FΛ
′ +∆ω +Op

(
T−1/2

)
=Λf∆fΛ

′
f +∆ω +Op

(
T−1/2

)
.

The first equality follows from assumptions 2.1, 2.4 and Lemma 2.1 and final equality follows from the

fact that ∆F is block diagonal (Assumption 4) and Λ =

[
Λf 0

]
by Assumption 5.

Item 2:

F̂B = N−ψfT−2Z ′JTXJNX ′JTZ

= Λ
(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTF

)
Λ′ +Λ

(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTω

)
+Λ

(
T−1F ′JTF

) (
N−ψfT−1Φ′JNε′JTF

)
Λ′ +Λ

(
T−1F ′JTF

) (
N−ψfT−1Φ′JNε′JTω

)
+Λ

(
N−ψfT−1F ′JTεJNΦ

) (
T−1F ′JTF

)
Λ′ +Λ

(
N−ψfT−1F ′JTεJNΦ

) (
T−1F ′JTω

)
+
N1−ψf
√
T

Λ
(
N−1T−3/2F ′JTεJNε′JTF

)
Λ′ +

N1−ψf
√
T

Λ
(
N−1T−3/2F ′JTεJNε′JTω

)
+
(
T−1ω′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTF

)
Λ′ +

(
T−1ω′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTω

)
+
(
T−1ω′JTF

) (
N−ψfT−1Φ′JNε′JTF

)
Λ′ +

(
T−1ω′JTF

) (
N−ψfT−1Φ′JNε′JTω

)
+
(
N−ψfT−1ω′JTεJNΦ

) (
T−1F ′JTF

)
Λ′ +

(
N−ψfT−1ω′JTεJNΦ

) (
T−1F ′JTω

)
+
N1−ψf
√
T

(
N−ψfT−3/2ω′JTεJNε′JTF

)
Λ′ +

N1−ψf
√
T

(
N−1T−3/2ω′JTεJNε′JTω

)
=Λ

(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTF

)
Λ′ +Op

(
Ξ−1
NT

)
.

The final equality follows from Assumption 2.1, 4 , Lemma 2 and equation A2.1.
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Now, using the fact that Λ =

[
Λf 0

]
(Assumption 5), we have

Λ
(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTF

)
Λ′ =Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦf

) (
T−1f ′JTf

)
Λ′
f

+Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦg

) (
T−1g′JTf

)
Λ′
f

+Λf

(
T−1f ′JTg

) (
N−ψfΦ′

gJNΦf

) (
T−1f ′JTf

)
Λ′
f

+
Nψg−ψf

T
Λf

(
T−1/2f ′JTg

) (
N−ψgΦ′

gJNΦg

)
×
(
T−1/2g′JTf

)
Λ′
f

=Λf∆fPf∆fΛ
′
f +Op

(
Ξ−1
NT

)
.

The final equality follows from Assumption 2.1, 4.

Hence, F̂B , which is N−ψfT−2Z ′JTXJNX ′JTZ is equal to Λf∆fPf∆fΛ
′
f +Op

(
Ξ−1
NT

)
.

Item 3:

F̂C,t = N−ψfT−1Z ′JTXJNxt

= Λ
(
T−1F ′JTF

) (
N−ψfΦ′JNϕ0

)
+Λ

(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

)
F t

+Λ
(
T−1F ′JTF

) (
N−ψfΦ′JNεt

)
+Λ

(
N−ψfT−1F ′JTεJNϕ0

)
+Λ

(
N−ψfT−1F ′JTεJNΦ

)
F t +

N1−ψf
√
T

Λ
(
N−1T−1/2F ′JTεJNεt

)
+
(
T−1ω′JTF

) (
N−ψfΦ′JNϕ0

)
+
(
T−1ω′JTF

) (
N−ψfΦ′JNΦ

)
F t

+
(
T−1ω′JTF

) (
N−ψfΦ′JNεt

)
+
(
N−1T−1ω′JTεJNϕ0

)
+
(
N−ψfT−1ω′JTεJNΦ

)
F t +

N1−ψf
√
T

(
N−1T−1/2ω′JTεJNεt

)
=N−ψfT−1Z ′JTXJNϕ0 +Λ

(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

)
F t +Op

(
Ξ−1
NT

)
.

Assumption 2.1, 4 , Lemma 2 and equation A2.1 give the final equality.

Again using Assumption 5; Λ =

[
Λf 0

]
, we have,

Λ
(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

)
F t =Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦf

)
f t

+Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦg

)
gt

+Λf

(
T−1f ′JTg

) (
N−ψfΦ′

gJNΦf

)
f t

+
Nψg−ψf
√
T

Λf

(
T−1/2f ′JTg

) (
N−ψgΦ′

gJNΦg

)
gt

=Λf∆fPff t +Op

(
Ξ−1
NT

)
.

The final equality again follows from Assumption 2.1, 4.
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Hence, F̂C,t = N−ψfT−1Z ′JTXJNxt = N−ψfT−1Z ′JTXJNϕ0 +Λf∆fPff t +Op

(
Ξ−1
NT

)
.

Combining results for Items 1-3, Using Assumption 6, we have,

F̂ t = T−1Z ′JTZ
(
N−ψfT−2Z ′JTXJNX ′JTZ

)−1
N−ψfT−1Z ′JTXJNxt

= F̂AF̂
−1

B F̂C,t

p−→
T,N→∞

(
Λf∆fΛ

′
f +∆ω

) (
Λf∆fPf∆fΛ

′
f

)−1 (
N−ψfT−1Z ′JTXJNϕ0 +Λf∆fPff t

)
.

Similarly expanding Z ′JTX gives Z ′JTX = Λf∆fΦ
′
f +Op(T

−1/2) and hence,

Φ̂
′
=
(
Z ′JTZ

)−1
Z ′JTX

p−→
T→∞

(
Λf∆fΛ

′
f +∆ω

)−1
Λf∆fΦ

′
f .

Lemma 5. Under Assumptions 1- 6, if
N1−ψf
√
T

= O(1), if γ = 0, and ζ = 0, we have,

1. β̂1 = T−1Z ′JTZ = Λf∆fΛ
′
f +∆ω +Op(T

−1/2).

2. β̂2 = N−ψfT−2Z ′JTXJNX ′JTZ = Λf∆fPf∆fΛ
′
f +Op

(
Ξ−1
NT

)
.

3. β̂3 = N−2ψfT−3Z ′JTXJNX ′JTXJNX ′JTZ = Λf∆fPf∆fPf∆fΛf
′ +Op

(
Ξ−1
NT

)
.

4. β̂4 = N−ψfT−2Z ′JTXJNX ′JTy = Λf∆fPf∆fβf +Op

(
Ξ−1
NT

)
.

Therefore,

β̂ =
(
T−1Z ′JTZ

)−1
N−ψfT−2Z ′JTXJNX ′JTZ

×
(
N−2ψfT−3Z ′JTXJNX ′JTXJNX ′JTZ

)−1
N−ψfT−2Z ′JTXJNX ′JTy

=β̂
−1

1 β̂2β̂
−1

3 β̂4

satisfies

β̂
p−→

T,N→∞

(
Λf∆fΛf

′ +∆ω

)−1
Λf∆fPf∆fΛf

′ (Λf∆fPf∆fPf∆fΛf
′)−1

Λf∆fPf∆fβf .

Proof :

Note that β̂1 = F̂A and β̂2 = F̂B and their probability limits are established in Lemma 4. The
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expressions for β̂3 and β̂4 are handled below.

β̂3 =(N2ψfT 3)−1(ΛF ′JTFΦ′JNΦF ′JTFΦ′JNΦF ′JTFΛ′ +ΛF ′JTFΦ′JNΦF ′JTFΦ′JNΦF ′JTω

+ΛF ′JTFΦ′JNΦF ′JTFΦ′JNε′JTFΛ′ +ΛF ′JTFΦ′JNΦF ′JTFΦ′JNε′JTω

+ΛF ′JTFΦ′JNε′JTεJNΦF ′JTFΛ′ +ΛF ′JTFΦ′JNε′JTεJNΦF ′JTω

+ΛF ′JTFΦ′JNε′JTεJNε′JTFΛ′ +ΛF ′JTFΦ′JNε′JTεJNε′JTω

+ΛF ′JTFΦ′JNΦF ′JTεJNΦF ′JTFΛ′ +ΛF ′JTFΦ′JNΦF ′JTεJNΦF ′JTω

+ΛF ′JTFΦ′JNΦF ′JTεJNε′JTFΛ′ +ΛF ′JTFΦ′JNΦF ′JTεJNε′JTω

+ΛF ′JTFΦ′JNε′JTFΦ′JNΦF ′JTFΛ′ +ΛF ′JTFΦ′JNε′JTFΦ′JNΦF ′JTω

+ΛF ′JTFΦ′JNε′JTFΦ′JNε′JTFΛ′ +ΛF ′JTFΦ′JNε′JTFΦ′JNε′JTω

+ ω′JTFΦ′JNΦF ′JTFΦ′JNΦF ′JTFΛ′ + ω′JTFΦ′JNΦF ′JTFΦ′JNΦF ′JTω

+ ω′JTFΦ′JNΦF ′JTFΦ′JNε′JTFΛ′ + ω′JTFΦ′JNΦF ′JTFΦ′JNε′JTω

+ ω′JTFΦ′JNε′JTεJNΦF ′JTFΛ′ + ω′JTFΦ′JNε′JTεJNΦF ′JTω

+ ω′JTFΦ′JNε′JTεJNε′JTFΛ′ + ω′JTFΦ′JNε′JTεJNε′JTω

+ ω′JTFΦ′JNΦF ′JTεJNΦF ′JTFΛ′ + ω′JTFΦ′JNΦF ′JTεJNΦF ′JTω

+ ω′JTFΦ′JNΦF ′JTεJNε′JTFΛ′ + ω′JTFΦ′JNΦF ′JTεJNε′JTω

+ ω′JTFΦ′JNε′JTFΦ′JNΦF ′JTFΛ′ + ω′JTFΦ′JNε′JTFΦ′JNΦF ′JTω

+ ω′JTFΦ′JNε′JTFΦ′JNε′JTFΛ′ + ω′JTFΦ′JNε′JTFΦ′JNε′JTω

+ ΛF ′JTεJNΦF ′JTFΦ′JNΦF ′JTFΛ′ +ΛF ′JTεJNΦF ′JTFΦ′JNΦF ′JTω

+ΛF ′JTεJNΦF ′JTFΦ′JNε′JTFΛ′ +ΛF ′JTεJNΦF ′JTFΦ′JNε′JTω

+ΛF ′JTεJNε′JTεJNΦF ′JTFΛ′ +ΛF ′JTεJNε′JTεJNΦF ′JTω

+ΛF ′JTεJNε′JTεJNε′JTFΛ′ +ΛF ′JTεJNε′JTεJNε′JTω

+ΛF ′JTεJNΦF ′JTεJNΦF ′JTFΛ′ +ΛF ′JTεJNΦF ′JTεJNΦF ′JTω

+ΛF ′JTεJNΦF ′JTεJNε′JTFΛ′ +ΛF ′JTεJNΦF ′JTεJNε′JTω

+ΛF ′JTεJNε′JTFΦ′JNΦF ′JTFΛ′ +ΛF ′JTεJNε′JTFΦ′JNΦF ′JTω

+ΛF ′JTεJNε′JTFΦ′JNε′JTFΛ′ +ΛF ′JTεJNε′JTFΦ′JNε′JTω

+ ω′JTεJNΦF ′JTFΦ′JNΦF ′JTFΛ′ + ω′JTεJNΦF ′JTFΦ′JNΦF ′JTω

+ ω′JTεJNΦF ′JTFΦ′JNε′JTFΛ′ + ω′JTεJNΦF ′JTFΦ′JNε′JTω

+ ω′JTεJNε′JTεJNΦF ′JTFΛ′ + ω′JTεJNε′JTεJNΦF ′JTω

+ ω′JTεJNε′JTεJNε′JTFΛ′ + ω′JTεJNε′JTεJNε′JTω
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+ ω′JTεJNΦF ′JTεJNΦF ′JTFΛ′ + ω′JTεJNΦF ′JTεJNΦF ′JTω

+ ω′JTεJNΦF ′JTεJNε′JTFΛ′ + ω′JTεJNΦF ′JTεJNε′JTω

+ ω′JTεJNε′JTFΦ′JNΦF ′JTFΛ′ + ω′JTεJNε′JTFΦ′JNΦF ′JTω

+ ω′JTεJNε′JTFΦ′JNε′JTFΛ′ + ω′JTεJNε′JTFΦ′JNε′JTω)

=(N2ψfT 3)−1ΛF ′JTFΦ′JNΦF ′JTFΦ′JNΦF ′JTFΛ′ +Op

(
Ξ−1
NT

)
.

The final equality follows from Assumption 2.1, Lemmas 2 and 3 and equation A2.1. Further, note that

(N−2ψfT−3)ΛF ′JTFΦ′JNΦF ′JTFΦ′JNΦF ′JTFΛ′

=
1

T

(
(N−ψfT−1)ΛF ′JTFΦ′JNΦF ′)JT ((N−ψfT−1)ΛF ′JTFΦ′JNΦF ′)′

=
1

T

(
Λf∆fPff ′ +Op

(
Ξ−1
NT

))
JT
(
fPf∆fΛ

′
f +Op

(
Ξ−1
NT

))
=Λf∆fPf

f ′JTf

T
Pf∆fΛf

′ +Op

(
Ξ−1
NT

)
=Λf∆fPf∆fPf∆fΛf

′ +Op

(
1/
√
T
)
+Op

(
Ξ−1
NT

)
.

We have used the result from the proof of Lemma 4.3 in the third equality. Standard arguments,

then, give us the fourth equality and the final equality follows from assumption 2.1. Hence , β̂3 =

N−2ψfT−3Z ′JTXJNX ′JTXJNX ′JTZ = Λf∆fPf∆fPf∆fΛf
′ +Op

(
Ξ−1
NT

)
.

NψfT 2β̂4 =ΛF ′JTFΦ′JNΦF ′JTFβ +ΛF ′JTFΦ′JNΦF ′JTη +ΛF ′JTFΦ′JNε′JTFβ

+ΛF ′JTFΦ′JNε′JTη + ω′JTFΦ′JNΦF ′JTFβ + ω′JTFΦ′JNΦF ′JTη

+ ω′JTFΦ′JNε′JTFβ + ω′JTFΦ′JNε′JTη +ΛF ′JTεJNΦF ′JTFβ

+ΛF ′JTεJNΦF ′JTη +ΛF ′JTεJNε′JTFβ +ΛF ′JTεJNε′JTη

+ ω′JTεJNΦFJTFβ + ω′JTεJNΦFJTη + ω′JTεJNε′JTFβ

+ ω′JTεJNε′JT η

=N−ψfT−2
(
ΛF ′JTFΦ′JNΦF ′JTFβ

)
+Op

(
Ξ−1
NT

)
.

The final equality follows from Assumption 2.1, Lemma 2 and equation A2.1.
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Further, note that, since Λ =

[
Λf 0

]
(Assumption 5) and β = (β′

f , 0
′)′ (Assumption 1), we have

Λ
(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTF

)
β =Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦf

) (
T−1f ′JTf

)
βf

+Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦg

) (
T−1g′JTf

)
βf

+Λf

(
T−1f ′JTg

) (
N−ψfΦ′

gJNΦf

) (
T−1f ′JTf

)
βf

+
Nψg−ψf

T
Λf

(
T−1/2f ′JTg

) (
N−ψgΦ′

gJNΦg

)
×
(
T−1/2g′JTf

)
βf

=Λf∆fPf∆fβf +Op

(
Ξ−1
NT

)
.

The final equality follows from Assumption 2.1, 4 and Lemma 2 and equation A2.1.

Hence, β̂4 = Z ′JTXJNX ′JTy = Λf∆fPf∆fβf + Op

(
Ξ−1
NT

)
. Combining these results give the

probability limit of β̂ stated in Lemma 5.

Using Lemmas 1-5, we now prove Theorems 1(a), 2, 3(a) and 4(a).

Theorem 1(a) Let Assumptions 1-6 hold and γ = 0 and ζ = 0. Additionally, if
N1−ψf
√
T

= O(1), then

we have,

ŷt+h,f − Etyt+h = Op(Ξ
−1
NT )

Proof: Let f̄ =

∑T
s=1 fs
T

. We have,

ŷt+h,f =ȳ +
(
N−ψfT−1 (xt − x̄)WXZ

) (
N−2ψfT−3W ′

XZSXXWXZ

)−1 (
N−ψfT−2W ′

XZSXy
)

=β0 + f̄
′
βf +Op(T

−1/2) +
((

f t − f̄
)′ Pf∆fΛ

′
f +Op(Ξ

−1
NT )

)
×
[
Λf∆fPf∆fPf∆fΛ

′
f +Op(Ξ

−1
NT ))

]−1 (
Λf∆fPf∆fβf +Op(Ξ

−1
NT )

)
=β0 + f̄

′
βf +Op(T

−1/2) +
(
f t − f̄

)′ Pf∆fΛ
′
f

[
Λf∆fPf∆fPf∆fΛ

′
f

]−1
Λf∆fPf∆fβf +Op(Ξ

−1
NT )

=β0 + f ′
tPf∆fΛ

′
f

[
Λf∆fPf∆fPf∆fΛ

′
f

]−1
Λf∆fPf∆fβf +Op(Ξ

−1
NT )

=β0 + f ′
tβf +Op(Ξ

−1
NT )

=Etyt+h +Op(Ξ
−1
NT ).

The third equality follows since, for any invertible matrices A and A+B, we have:

(A+B)
−1

= A−1 −A−1B (A+B)
−1
, (A2.2)
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which implies that:

(
Λf∆fPf∆fPf∆fΛ

′
f +Op(Ξ

−1
NT )

)−1
=
(
Λf∆fPf∆fPf∆fΛ

′
f

)−1

−
(
Λf∆fPf∆fPf∆fΛ

′
f

)−1
Op(Ξ

−1
NT )

×
(
Λf∆fPf∆fPf∆fΛ

′
f +Op(Ξ

−1
NT )

)−1

=
(
Λf∆fPf∆fPf∆fΛ

′
f

)−1 −Op(1)Op(Ξ
−1
NT )Op(1)

=
(
Λf∆fPf∆fPf∆fΛ

′
f

)−1 −Op(Ξ
−1
NT ).

The final equality comes from Assumptions 4 and 5, which require Λf , Pf , and ∆f to be non-singular.

The stochastic orders in the expression are obtained using Lemmas 4 and 5 and noting that

∑T
s=1 ηh+s
T

=

Op(T
−1/2).

Theorem 2 Let α̂i denote the ith element of α̂. Let Assumptions 1-6 hold and γ = 0 and ζ = 0 and

Pf = I, Then for any i,

Nψf α̂i
p−−−−−→

T,N→∞

(
ϕif −Nψf−1ϕ̄f

)′
βf .

Proof : α̂i = Siα̂, where Si is the (1×N) selector vector with ith element equal to one and remaining

elements zero. Using the expression for α̂ we have,

α̂i =N
−ψfT−1SiJNX ′JTZ

(
N−2ψfT−3Z ′JTXJNX ′JTXJNX ′JTZ

)−1

×N−ψfT−2Z ′JTXJNX ′JTy.

From Lemma 4 and 5, we have

α̂i = N−ψfSiJNϕf∆fΛ
′
f

(
Λf∆fPf∆fPf∆fΛ

′
f

)−1
Λf∆fPf∆fβf + op(1).

The expression SiJNΦf has the probability limit ϕif −Nψf−1ϕf as N,T → ∞. Therefore, we have that

Nψf α̂i
p−→

T,N→∞

(
ϕif −Nψf−1ϕf

)′
∆fΛ

′
f

(
Λf∆fPf∆fPf∆fΛ

′
f

)−1
Λf∆fPf∆fβf .

Using the fact that Pf = I this reduces to
(
ϕif −Nψf−1ϕf

)′
βf .

Define Gβ ≡ β̂
−1

1 β̂2

(
Λf∆fPf∆fPf∆fΛ

′
f

)−1
(Λf∆fPf∆f ), where β̂1 and β̂2 are defined in Lemma

5.

Theorem 3(a) Let Assumptions 1-6 hold and γ = 0 and ζ = 0. Additionally, if
N1−ψf
√
T

= O(1), then

we have,

β̂ −Gββf = Op(Ξ
−1
NT ).
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Proof :

β̂ =
(
T−1Z ′JTZ

)−1
N−ψfT−2Z ′JTXJNX ′JTZ

×
(
N−2ψfT−3Z ′JTXJNX ′JTXJNX ′JTZ

)−1
N−ψfT−2Z ′JTXJNX ′JTy

=β̂
−1

1 β̂2

(
Λf∆fPf∆fPf∆fΛ

′
f +Op(Ξ

−1
NT )

)−1 (
Λf∆fPf∆fβf +Op(Ξ

−1
NT )

)
=β̂

−1

1 β̂2

(
Λf∆fPf∆fPf∆fΛ

′
f

)−1
(Λf∆fPf∆f )βf +Op(Ξ

−1
NT )

=Gββf +Op(Ξ
−1
NT ).

The stochastic orders in the expression are obtained using Lemmas 4 and 5. The second equality follows

by employing the identity for the inverse of a sum of two matrices as in the proof of Theorem 1(a).

Define Hf ≡ F̂AF̂
−1

B Λf∆fPf and H0 ≡ F̂AF̂
−1

B

[
N−ψfT−1Z ′JTXJNϕ0

]
.

Theorem 4(a) Let Assumptions 1-6 hold and γ = 0 and ζ = 0. Additionally, if
N1−ψf
√
T

= O(1), we

have,

F̂ t − (H0 +Hff t) = Op(Ξ
−1
NT ).

Proof:

F̂ t = T−1Z ′JTZ
(
N−ψfT−2Z ′JTXJNX ′JTZ

)−1
N−ψfT−1Z ′JTXJNxt

= F̂AF̂
−1

B

[
N−ψfT−1Z ′JTXJNϕ0 +Λf∆fPff t +Op

(
Ξ−1
NT

)]
= F̂AF̂

−1

B

[
N−ψfT−1Z ′JTXJNϕ0

]
+ F̂AF̂

−1

B Λf∆fPff t +Op

(
Ξ−1
NT

)
= H0 +Hff t +Op(Ξ

−1
NT ).

Second equality follows from employing the expression for F̂ c,t in Lemma 4. Hf
′Gβ = I can be verified

easily given Assumptions 4 and 5.

Remark 7. The proofs of Theorem 1, 2, and 4 can be approached in an alternative manner. We can

demonstrate that, for the matrix H2 = F̂AF̂
−1

B Z ′JTXJNΦf , F̂ t converges to H2f t at the rate ΞNT ,

while β̂ converges to H ′
2
−1

β at min
(√

Nψf ,
√
T
)
rate, under the assumptions of our model. Therefore,

by specifying a different limit, we can establish faster convergence of β̂ to that limit. Essentially, we

require that rotations in F̂ t and β̂ be nullified upon multiplication, which occurs with this newly specified

limit.

However, we specify the matrix Hf such that β̂ converges to H ′
f
−1

β at the slower ΞNT rate. We do

this for simplicity of exposition, noting that the convergence rate of the target depends on the convergence
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rates of both F̂ t and β̂. Consequently, any improvement in the convergence result for β̂ is not useful

unless the rate for F̂ t improves as well.

In Kelly & Pruitt [2015], they specify the convergence of F̂ t to HF t, where H = Z ′JTXJNΦ at

a
√
N rate. In our weak factor context, this would be a

√
Nψf rate. However, this matrix H is not

square unless there are zero irrelevant factors. Elements of HF t are linear combinations of relevant

and irrelevant factors. Therefore, their convergence result can not be employed in our context to obtain

faster convergence for the target estimator. We must establish convergence of our factor estimates to

some rotation of relevant factors.

A3 Proofs of Theorems 1(b), 3(b) and 4(b)

We introduce 3 Lemmas which shall be employed for subsequent proofs (Theorems 1(b), 3(b), 4(b))

which deal with the general setting of ζ ̸= 0 and γ ̸= 0.

Lemma 6. Let Assumptions 1-3 , 6, 8 and 9 hold. Additionally, let
T

N
= O(1). Then,

1. N−1T−1/2ε′JT εJNεt = Op

(
δ−1
NT

)
.

2. N−1T−3/2ε′JT εJNε′JTε = Op

(
δ−1
NT

)
.

3. N−1T−3/2F ′JTεJNε′JTε = Op

(
δ−1
NT

)
.

4. N−ψf/2T−1Φ′JNε′JTε = Op

(
Ξ−1
NT

)
.

5. N−1T−3/2ω′JT εJNε′JTε = Op

(
δ−1
NT

)
.

6. N−1T−3/2η′JT εJNε′JTε = Op

(
δ−1
NT

)
.

7. (a) T−1/2F ′JTε = Op(1) and T−1/2ω′JTε = Op(1).

To prove this lemma, we need to show the following,

Let Assumptions 1-3 and 6-8 hold. Then, for all t,m,

N−1T−1/2
∑
i,s

εs(m)εisεit = Op
(
δ−1
NT

)
.

Proof: Adding and subtracting terms, we can write the above as,

N−1/2

N−1/2T−1/2
∑
i,s

εs(m) [εisεit − σii,st]

+ T−1/2

N−1
∑
i,s

εs(m)σii,st

 .

= I + II
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E
∣∣∣N−1

∑
i,s εs(m)σii,st

∣∣∣ ≤ N−1 maxs E |εs(m)|
∑
i,s |σii,st| = Op(1) by Assumption 3.1 2.3. Hence, the

second term is Op
(
T−1/2

)
.

For the first term to be Op
(
N−1/2

)
, it is sufficient to show that

E

∣∣∣∣∣∣(NT )−1/2
∑
i,s

εs(m) [εisεit − σii,st]

∣∣∣∣∣∣
2

≤M

Proof: Using Cauchy Schwartz inequality twice,

E

∣∣∣∣∣∣(NT )−1/2
∑
i,s

εs(m) [εisεit − σii,st]

∣∣∣∣∣∣
2

=E

(NT )−1
∑
i,j,s,u

εs(m)εu(m) [εisεit − σii,st] [εjuεjt − σjj,ut]


≤max

s,u

(
E |εs(m)εu(m)|2

)1/2

×

E

(NT )−1
∑
i,j,s,u

[εisεit − σii,st] [εjuεjt − σjj,ut]

2


1/2

≤max
s,u

(
E |εs(m)|4

)1/4 (
E |εu(m)|4

)1/4E

∣∣∣∣∣∣(NT )−1/2
∑
i,s

[εisεit − σii,st]

∣∣∣∣∣∣
4


1/2

<∞

by Assumptions 2.3 and 3.2. Therefore we have that,

N−1T−1/2
∑
i,s

εs(m)εisεit = Op
(
δ−1
NT

)
. (A3.1)

Now we can prove Lemma 6

Item 1 = N−1T−1/2ε′JT εJNεt has generic m
th element given by

N−1T−1/2
∑
i,s

εs(m)εisεit −N−2T−1/2
∑
i,j,s

εs(m)εisεjt

−N−1T−3/2
∑
i,s,u

εs(m)εiuεit +N−2T−3/2
∑
i,j,s,u

εs(m)εiuεjt

=1.I− 1.II− 1.III + 1.IV
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1.I is Op
(
δ−1
NT

)
by equation A3.1.

1.II = N−1/2

N−1
∑

i∈∆m,ε

(
T−1/2

∑
s

εs(m)εis

)
+
T 1/2

N

∑
i∈∆cm,ε

(
T−1

∑
s

εs(m)εis

)N−1/2
∑
j

εjt


= N−1/2Op (1)

= Op

(
N−1/2

)

by Assumption 8 and Lemma 1.3.

1.III is Op
(
δ−1
NTT

−1/2
)
by Lemma 1.3 and 1.10.

1.IV is Op
(
N−1T−1/2

)
by Lemma 1.3. Summing these terms, Item 1 is Op

(
δ−1
NT

)
.

Item 2 : N−1T−3/2ε′JT εJNε′JTε is a N ×N matrix with generic (m1,m2) element,

N−1T−3/2
∑
i,s,t

εs (m1) εisεitεt (m2)−N−1T−5/2
∑
i,s,t,u

εs (m1) εisεitεu (m2)

−N−1T−5/2
∑
i,s,t,u

εs (m1) εitεiuεu (m2) +N−1T−7/2
∑

i,s,t,u,v

εs (m1) εitεiuεv (m2)

+N−2T−3/2
∑
i,j,s,t

εs (m1) εisεjtεt (m2) +N−2T−5/2
∑

i,j,s,t,u

εs (m1) εisεjtεu (m2)

+N−2T−5/2
∑

i,j,s,t,u

εs (m1) εitεjuεu (m2)−N−2T−7/2
∑

i,j,s,t,u,v

εs (m1) εitεjuεv (m2)

=2.I− · · · − 2. VIII.

2.I can be wriiten as,

T−1/2

N−1

 ∑
i∈(∆m1,ε

∪∆m2,ε
)

(
T−1/2

∑
s

εs(m1)εis

)(
T−1/2

∑
t

εt(m2)εit

)
+

T

N

 ∑
i∈(∆m1,ε

∪∆m2,ε
)c

(
T−1

∑
s

εs(m1)εis

)(
T−1

∑
t

εt(m2)εit

)
=Op(T

−1/2),

by Assumption 8, given that
T

N
= O(1).

2.II is Op
(
δ−1
NTT

−1/2
)
by Lemma 1.3 and equation A3.1. Item 2.III is identical.

2.IV is Op
(
δ−1
NTT

−1
)
by Lemma 1.3 and 1.10.
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2.V can be written as,

T−1/2

N−1
∑

i∈∆m1,ε

(
T−1/2

∑
s

εs(m1)εis

)
+
T 1/2

N

∑
i∈∆cm1,ε

(
T−1

∑
s

εs(m1)εis

)
×

N−1
∑

j∈∆m2,ε

(
T−1/2

∑
t

εt(m2)εjt

)
+
T 1/2

N

∑
j∈∆cm2,ε

(
T−1

∑
t

εt(m2)εjt

) .

This is Op
(
T−1/2

)
by Assumption 8, given that

T 1/2

N
= O(1).

2.VI is given by

N−1/2T−1

N−1
∑

i∈∆m1,ε

(
T−1/2

∑
s

εs(m1)εis

)
+
T 1/2

N

∑
i∈∆cm1,ε

(
T−1

∑
s

εs(m1)εis

)
×

N−1/2T−1/2
∑
j,t

εjt

(T−1/2
∑
v

εv(m2)

)

=Op

(
N−1/2T−1

)

by Assumption 8 and Lemma 1.3. Item 2.VII is identical.

2.VIII is Op
(
N−1T−3/2

)
by Lemma 1.3.

Summing these terms, Item 2 is Op

(
δ−1
NT

)
.

Item 3 = N−1T−3/2F ′JT εJNε′JTε = Op

(
δ−1
NT

)
is a K ×N matrix with generic (m1,m2) element

N−1T−3/2
∑
i,s,t

Fs (m1) εisεitεt (m2)−N−1T−5/2
∑
i,s,t,u

Fs (m1) εisεitεu (m2)

−N−1T−5/2
∑
i,s,t,u

Fs (m1) εitεiuεu (m2) +N−1T−7/2
∑

i,s,t,u,v

Fs (m1) εitεiuεv (m2)

+N−2T−3/2
∑
i,j,s,t

Fs (m1) εisεjtεt (m2) +N−2T−5/2
∑

i,j,s,t,u

Fs (m1) εisεjtεu (m2)

+N−2T−5/2
∑

i,j,s,t,u

Fs (m1) εitεjuεu (m2)−N−2T−7/2
∑

i,j,s,t,u,v

Fs (m1) εitεjuεv (m2)

=3.I− · · · − 3 VIII.
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3.I can be written as,

T−1/2

N−1

 ∑
i∈∆m2,ε

(
T−1/2

∑
s

Fs(m1)εis

)(
T−1/2

∑
t

εt(m2)εit

)
+
T 1/2

N

 ∑
i∈∆cm2,ε

(
T−1/2

∑
s

Fs(m1)εis

)(
T−1

∑
t

εt(m2)εit

)
=Op(T

−1/2)

by Assumptions 3.6 , 8 and the fact that
T 1/2

N
= O(1).

3.II = Op
(
δ−1
NTT

−1/2
)
by Lemma 1.3 and 1.12.

3.III = Op
(
δ−1
NT

)
by 2.1 and equation A3.1.

3.IV = Op
(
δ−1
NTT

−1/2
)
by Assumption 2.1, Lemma 1.3 and 1.10.

3.V can be written as,

T−1/2

([
N−1

∑
i

(
T−1/2

∑
s

Fs(m1)εis

)]

×

N−1
∑

i∈∆m2,ε

(
T−1/2

∑
t

εt(m2)εjt

)
+
T 1/2

N

∑
i∈∆cm2,ε

(
T−1

∑
t

εt(m2)εjt

)
=Op

(
T−1/2

)

by Assumption 3.6, given that
T 1/2

N
= O(1).

3.VI is given by

N−1/2T−1

([
N−1

∑
i

(
T−1/2

∑
s

Fs(m1)εis

)]

×

N−1/2T−1/2
∑
j,t

εjt

(T−1/2
∑
u

εu(m2)

)
=Op

(
N−1/2T−1

)

by Assumption 3.6 and Lemma 1.3.

3.VII is given by

N−1/2T−1

(T−1
∑
s

Fs(m2)

)N−1/2T−1/2
∑
i,t

εit


×

N−1
∑

j∈∆m2,ε

(
T−1/2

∑
u

εu(m2)εju

)
+
T 1/2

N

∑
j∈∆cm2,ε

(
T−1

∑
u

εu(m2)εju

)
=Op

(
N−1/2T−1

)
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by Assumption 8 and 2.1.

3.VIII is Op
(
N−1T−1

)
by Assumption 2.1 and Lemma 1.3. Summing these terms, Item 3 is Op

(
δ−1
NT

)
.

Item 5 and Item 6 follow similar steps as 3.

Item 4 is a K ×N matrix which can be partitioned as

N−ψf/2T−1Φ′JNε′JTε =

N−ψf/2T−1Φ′
fJNε′JTε

N−ψf/2T−1Φ′
gJNε′JTε

 .
We show that N−ψf/2T−1Φ′

fJNε′JTε is Op(Γ
−1
NfT

). Similar arguments would establish

N−ψg/2T−1Φ′
gJNε′JTε is Op(Γ

−1
NgT

), which implies N−ψf/2T−1Φ′
gJNε′JTε is Op

(
Nψg−ψf

ΓNgT

)
.

Hence the matrix N−ψf/2T−1Φ′JNε′JTε is Op

(
ΓNfT ∨ Nψg−ψf

ΓNgT

)
= Op

(
Ξ−1
NT

)
.

Below, we show that N−ψf/2T−1Φ′
fJNε′JTε is Op(Γ

−1
NfT

).

N−ψf/2T−1Φ′
fJNε′JTε is a Kg ×N matrix with generic (m1,m2) element

N−ψf/2T−1
∑
i,t

ϕif (m1) εt (m2) εit −N−ψf/2−1T−1
∑
i,j,t

ϕif (m1) εt (m2) εjt

−N−ψf/2T−2
∑
j,s,t

εs (m2)ϕjf (m1) εjt +N−ψf/2−1T−2
∑
i,j,s,t

εs (m2)ϕif (m1) εjt

=4.I− 4.II− 4.III + 4.IV.

4.I is Op

(
Γ−1
NfT

)
by Lemma 1.16.

4.II is Nψf/2T−1/2δ−1
NT

(
N−1T−1/2

∑
j,t εt (m2) εjt

) (
N−ψfϕif (m1)

)
which is Op

(
Nψf/2T−1/2δ−1

NT

)
by

Assumption 2.2 and Lemma 1.10. If
Nψf

T
= O(1) then this is Op

(
Γ−1
NfT

)
.

4.III is T−1/2
(
T−1

∑
t

(∑
j N

−ψf/2ϕjf (m1) εjt

)) (
T−1/2

∑
s εs (m2)

)
, which is

Op
(
T−1/2

)
by Assumption 3.7 and Lemma 1.3.

4.IV is equal to (N
ψf−1

2 T−1
(
N−ψf

∑
i ϕif (m1)

) (
N−1/2T−1/2

∑
j,t εjt

) (
T−1/2

∑
s εs (m2)

)
which is Op

(
N

ψf−1

2 T−1
)
by Assumption 2.2 and Lemma 1.3.

Summing these terms, N−ψf/2T−1Φ′
fJNε′JTε is Op

(
Γ−1
NfT

)
and hence N−ψf/2T−1Φ′JNε′JTε is

Op

(
ΓNfT ∨ Nψg−ψf

ΓNgT

)
= Op

(
Ξ−1
NT

)
.

Item 7:

(a)

T−1/2F ′JTε = T−1/2
∑
t

F tε
′
t −

(
T−1

∑
t

F t

)(
T−1/2

∑
t

ε′t

)

= Op(1)
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by Assumption 2.1, 3.6 and Lemma 1.3. 7(b) follows using the same argument and employing Assumption

2.4, 3.5, and Lemma 1.3.

Lemma 7. Under Assumptions 1-5,8 and 9, if
N1−ψf
√
T

= O(1) and
T

N
= O(1), we have,

1. F̂A = T−1Z ′JTZ = Λf∆fΛ
′
f + ζ

(
T−1ε′JTε

)
ζ′ +∆ω +Op(T

−1/2).

2. F̂B = N−ψfT−2Z ′JTXJNX ′JTZ = Λf∆fPf∆fΛ
′
f +Op

(
Ξ−1
NT

)
.

3. F̂C,t = N−ψfT−1Z ′JTXJNxt = N−ψfT−1Z ′JTXJNϕ0 +Λf∆fPff t +Op

(
Ξ−1
NT

)
.

Consequently, the probability limit of F̂ t is

F̂ t
p−→

T,N→∞

(
Λf∆fΛ

′
f + ζ

(
T−1ε′JTε

)
ζ′ +∆ω

) (
Λf∆fPf∆fΛ

′
f

)−1 (
N−ψfT−1Z ′JTXJNϕ0 +Λf∆fPff t

)
.

Proof:

F̂ t = T−1Z ′JTZ
(
N−ψT−2Z ′JTXJNX ′JTZ

)−1
N−ψT−1Z ′JTXJNxt

= F̂AF̂
−1

B F̂C,t.

We look at all these terms separately,

F̂A =T−1Z ′JTZ

=Λ
(
T−1F ′JTF

)
Λ′ +Λ

(
T−1F ′JTω

)
+
(
T−1ω′JTF

)
Λ′ + T−1ω′JTω

+Λ
(
T−1F ′JTε

)
ζ′ + ζ

(
T−1ε′JTF

)
Λ+ ζ

(
T−1ε′JTω

)
+
(
T−1ω′JTε

)
ζ′ + ζ

(
T−1ε′JTε

)
ζ′

=Λ∆FΛ
′ + ζ

(
T−1ε′JTε

)
ζ′ +∆ω +Op(T

−1/2)

=Λf∆fΛ
′
f + ζ

(
T−1ε′JTε

)
ζ′ +∆ω +Op(T

−1/2).

The limit follows using Assumption 2.1, 5, Lemma 4 and 6 and noting that ζ has a finite number of

non-zero entries by Assumption 9.

F̂B =N−ψfT−2Z ′JTXJNX ′JTZ

=N−ψfT−2
(
ιTλ

′
0 + FΛ′ + ω

)′
JTXJNX ′JT

(
ιTλ

′
0 + FΛ′ + ω

)
+N−ψfT−2ζε′JTXJNX ′JT

(
ιTλ

′
0 + FΛ′ + ω + εζ′)

+N−ψfT−2
(
ιTλ

′
0 + FΛ′ + ω + εζ′)′ JTXJNX ′JTεζ

′

=I + II + III.

The probability limit of I was established in Lemma 4. Also note that II is transpose of III. We establish
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the probability limit of III below.

III′ =N−ψfT−2
(
ιTλ

′
0 + FΛ′ + ω + εζ′)′ JTXJNX ′JTεζ

′

=Λ
(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTε

)
ζ′ +Λ

(
T−1F ′JTF

) (
N−ψfT−1Φ′JNε′JTε

)
ζ′

+Λ
(
N−ψfT−1F ′JTεJNΦ

) (
T−1F ′JTε

)
ζ′ +

(
T−1ω′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTε

)
ζ′

+
(
T−1ω′JTF

) (
N−ψfT−1Φ′JNε′JTε

)
ζ′ +

(
N−ψfT−1ω′JTεJNΦ

) (
T−1F ′JTε

)
ζ′

+ ζ
(
T−1ε′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTε

)
ζ′ + ζ

(
T−1ε′JTF

) (
N−ψfT−1Φ′JNε′JTε

)
ζ′

+ ζ
(
N−ψfT−1ε′JTεJNΦ

) (
T−1F ′JTε

)
ζ′ +

N1−ψf
√
T

(
N−ψfT−3/2ω′JTεJNε′JTε

)
ζ′

+
N1−ψf
√
T

Λ
(
N−ψfT−3/2F ′JTεJNε′JTε

)
ζ′ +

N1−ψf
√
T

ζ
(
N−ψfT−3/2ε′JTεJNε′JTε

)
ζ′

=Op(Ξ
−1
NT ).

The final equality comes from Lemma 2 ,6, equation A2.1, Assumption 2.1, 4 and noting the fact that

ζ has finitely many non-zero entries given Assumption 9. Hence, F̂B = N−ψfT−2Z ′JTXJNX ′JTZ

= Λf∆fPf∆fΛ
′
f +Op

(
Ξ−1
NT

)
.

F̂C,t =N
−ψfT−1Z ′JTXJNxt

=N−ψfT−1Z ′JTXJNϕ0 +N−ψfT−1
(
ιTλ

′
0 + FΛ′ + ω

)′
JTXJNxt + ζ

(
T−1ε′JTF

) (
N−ψfΦ′JNΦ

)
F t

+ ζ
(
T−1ε′JTF

) (
N−ψfΦ′JNεt

)
+ ζ

(
N−ψfT−1ε′JTεJNΦ

)
F t +

N1−ψf
√
T

ζ
(
N−1T−1/2ε′JTεJNεt

)
=N−ψfT−1Z ′JTXJNϕ0 +Λf∆fPff t +Op(Ξ

−1
NT ).

The stochastic order of the second term was established in Lemma 4 which yields the order here since all

terms except the first two are Op(Ξ
−1
NT ) given Lemma 6 and the fact that ζ has finitely many non-zero

entries by Assumption 9.

Continuous mapping theorem yields the plm of F̂ t.

Lemma 8. Under Assumptions 1-5,8 and 9, if
N1−ψf
√
T

= O(1) and
T

N
= O(1),

1. β̂1 = T−1Z ′JTZ = Λf∆fΛ
′
f + ζ

(
T−1ε′JTε

)
ζ′ +∆ω +Op(T

−1/2).

2. β̂2 = N−ψfT−2Z ′JTXJNX ′JTZ = Λf∆fPf∆fΛ
′
f +Op

(
Ξ−1
NT

)
.

3. β̂3 = N−2ψfT−3Z ′JTXJNX ′JTXJNX ′JTZ = Λf∆fPf∆fPf∆fΛf
′ +Op

(
Ξ−1
NT

)
.

4. β̂4 = N−ψfT−2Z ′JTXJNX ′JTy = Λf∆fPf∆fβf +Op

(
Ξ−1
NT

)
.
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Therefore,

β̂ =
(
T−1Z ′JTZ

)−1
N−ψfT−2Z ′JTXJNX ′JTZ

×
(
N−2ψfT−3Z ′JTXJNX ′JTXJNX ′JTZ

)−1
N−ψfT−2Z ′JTXJNX ′JTy

=β̂
−1

1 β̂2β̂
−1

3 β̂4

has the the probability limit under Assumption 6 given by,

β̂
p−→

T,N→∞

(
Λf∆fΛ

′
f + ζ

(
T−1ε′JTε

)
ζ′ +∆ω

)−1
Λf∆fPf∆fΛf

′ (Λf∆fPf∆fPf∆fΛf
′)−1

×Λf∆fPf∆fβf .

Proof :

β̂ =
(
T−1Z ′JTZ

)−1
N−ψfT−2Z ′JTXJNX ′JTZ

×
(
N−2ψfT−3Z ′JTXJNX ′JTXJNX ′JTZ

)−1
N−ψfT−2Z ′JTXJNX ′JTy

=β̂
−1

1 β̂2β̂
−1

3 β̂4.

Note that β̂1 = F̂A and β̂2 = F̂B and their probability limits are established in Lemma 7. The expres-

sions for β̂3 and β̂4 are handled below. Note that,

β̂3 = N−2ψfT−3Z ′JTXJNX ′JTXJNX ′JTZ is essentially the product
F̂CJT F̂

′
C

T
where F̂C is

obtained by stacking F̂C,t horizontally. Using the probability limit of F̂C,t obtained in Lemma 7

standard arguments would imply that plim

(
F̂CJT F̂

′
C

T

)
= Λf∆fPf

(
T−1fJTf

)
Pf∆fΛf

′ which

is equal to Λf∆fPf∆fPf∆fΛf
′ given Assumption 2.1. Using Lemma 6 and the expression for

F̂C,t in Lemma 7 we can establish that N−2ψfT−3Z ′JTXJNX ′JTXJNX ′JTZ =
F̂CJT F̂

′
C

T
=

Λf∆fPf∆fPf∆fΛf
′ +Op(Ξ

−1
NT ).

β̂4 =N−ψfT−2Z ′JTXJNX ′JTy

=N−ψfT−2
(
ιTλ

′
0 + FΛf

′ + ω
)′
JTXJNX ′JT (ιTβ0 + Fβ + η)

+N−ψfT−2ζε′JTXJNX ′JT (ιTβ0 + Fβ + εγ + η)+

N−ψfT−2
(
ιTλ

′
0 + FΛf

′ + ω + εγ
)′
JTXJNX ′JTεγ

=I + II + III.

The stochastic order of I was established in Lemma 5. III is Op(Ξ
−1
NT ) , which can be seen simply by

replacing ζ ′ by γ in the III term of expression of F̂B in Lemma 7 and noting that
(
γi = 0 =⇒ ζ′

i = 0
)
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by Assumption 9. We look at the transpose of II below.

II′ =N−ψfT−2 (ιTβ0 + Fβ + εγ + η)
′
JTXJNX ′JTεζ

′

=β′ (T−1F ′JTF
) (
N−ψfΦ′JNΦ

) (
T−1F ′JTε

)
ζ′ + β′ (T−1F ′JTF

) (
N−ψfT−1Φ′JNε′JTε

)
ζ′

+ β′ (N−ψfT−1F ′JTεJNΦ
) (
T−1F ′JTε

)
ζ′ +

(
T−1η′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTε

)
ζ′

+
(
T−1η′JTF

) (
N−ψfT−1Φ′JNε′JTε

)
ζ′ +

(
N−ψfT−1η′JTεJNΦ

) (
T−1F ′JTε

)
ζ′

+ γ′ (T−1ε′JTF
) (
N−ψfΦ′JNΦ

) (
T−1F ′JTε

)
ζ′ + γ′ (T−1ε′JTF

) (
N−ψfT−1Φ′JNε′JTε

)
ζ′

+ γ′ (N−ψfT−1ε′JTεJNΦ
) (
T−1F ′JTε

)
ζ′ +

N1−ψf
√
T

(
N−ψfT−3/2η′JTεJNε′JTε

)
ζ′

+
N1−ψf
√
T

β′
(
N−ψfT−3/2F ′JTεJNε′JTε

)
ζ′ +

N1−ψf
√
T

γ′
(
N−ψfT−3/2ε′JTεJNε′JTε

)
ζ′

=Op(Ξ
−1
NT ).

The final equality comes from Lemma 2, 6 and noting the fact that ζ and γ have finitely many non-zero

entries given Assumption 9. Therefore, β̂4 = Λf∆fPf∆fβ +Op(Ξ
−1
NT ).

Given the probability limits of β̂1, β̂2, β̂3 and , β̂4, Continuous mapping theorem yields the probability

limit in the statement of Lemma 8, i.e.,

β̂
p−→

T,N→∞

(
Λf∆fΛf

′ + ζ
(
T−1ε′JTε

)
ζ′ +∆ω

)−1
Λf∆fPf∆fΛf

′ (Λf∆fPf∆fPf∆fΛf
′)−1

Λf∆fPf∆fβ.

Theorem 1(b) Let Assumptions 1-9 hold,
N1−ψ
√
T

= O(1) and
T

N
= O(1), then

ŷt+h,f − E (yt+h|F t) = Op(Ξ
−1
NT ).

Proof: From Lemma 4, 5, 7 and 8, we have established that

• N−ψfT−1 (xt − x̄)JNX ′JTZ = F̂C,t − F̄C =
(
f t − f̄

)′ Pf∆fΛ
′
f +Op(Ξ

−1
NT ).

• N−2ψfT−3Z ′JTXJNX ′JTXJNX ′JTZ = Λf∆fPf∆fPf∆fΛ
′
f +Op(Ξ

−1
NT ).

• N−ψT−2Z ′JTXJNX ′JTy = Λf∆fPf∆fβf +Op(Ξ
−1
NT ).

Given these results and the fact that for all i, T−1/2
∑
t εit = Op(1) by Lemma 1.3, we get that ŷt+h,f =

β0 + F ′
tβ +Op(Ξ

−1
NT ) using the same steps as in the proof of Theorem 1(a).

The Proofs for Theorem3(b) and Theorem4(b) respectively, follow similarly given the rates derived in

Lemmas 7 and 8.
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A4 Proof of Theorem 5

We now proceed to prove Theorem 5 which deals with stage 2 of 3PRF-Lasso. We introduce 2 Lemmas

which shall be used in the subsequent proof of Theorem 5

Lemma 9. Define x̂it ≡ ϕ̂0,i+ F̂
′
tϕ̂i, where ϕ̂0,i and ϕ̂i are obtained from stage-2 Pass 1 regression. Let

Assumptions 1-6 and 8 hold,
N1−ψf
√
T

= O(1) and
T

N
= O(1), then

ε̂it −
(
εit + g′

tϕig − ḡ′ϕig
)
= Op(Ξ

−1
NT ).

.

Proof: The proof proceeds in a similar manner to Theorem1(b). The target y can be replaced by xi and

the proof follows similar steps.

First notice that, using the same steps as in proof of Lemma 4 for F̂B , we can get

N−ψfT−2W ′
XZSXxi = Λ

(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTF

)
ϕi +Op

(
Ξ−1
NT

)
.

Employing the fact that Λ =

[
Λf 0

]
(Assumption 5), we have

Λ
(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTF

)
ϕi

= Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦf

) (
T−1f ′JTf

)
ϕif

+Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦg

) (
T−1g′JTf

)
ϕif

+Λf

(
T−1f ′JTg

) (
N−ψfΦ′

gJNΦf

) (
T−1f ′JTf

)
ϕif

+
Nψg−ψf

T
Λf

(
T−1/2f ′JTg

) (
N−ψgΦ′

gJNΦg

) (
T−1/2g′JTf

)
ϕif

+Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦf

) (
T−1f ′JTg

)
ϕig

+Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦg

) (
T−1g′JTg

)
ϕig

+Λf

(
T−1f ′JTg

) (
N−ψfΦ′

gJNΦf

) (
T−1f ′JTg

)
ϕig

+
Nψg−ψf
√
T

Λf

(
T−1/2f ′JTg

) (
N−ψgΦ′

gJNΦg

) (
T−1g′JTg

)
ϕig

= Λf∆fPf∆fϕif +Op

(
Ξ−1
NT

)
+Op

(
Ξ−1
NT

)
ϕig

= Λf∆fPf∆fϕif +Op

(
Ξ−1
NT

)
.

The result follows from Assumption 2.1 and 4. Substituting this in the expression of x̂it we get,
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x̂it = x̄i +
(
N−ψfT−1 (xt − x̄)WXZ

) (
N−2ψfT−3W ′

XZSXXWXZ

)−1 (
N−ψfT−2W ′

XZSXxi

)
= ϕ0,i + F̄

′
ϕi +Op(T

−1/2) +
((

f t − f̄
)′ Pf∆fΛ

′
f +Op(Ξ

−1
NT )

)
×
[
Λf∆fPf∆fPf∆fΛ

′
f +Op(Ξ

−1
NT )

]−1 (
Λf∆fPf∆fϕif +Op

(
Ξ−1
NT

)
ϕig +Op(Ξ

−1
NT )

)
= ϕ0,i + f̄

′
ϕif + ḡ′ϕig +Op(T

−1/2) +
(
f t − f̄

)′ P1∆f,1Λ
′
f

× [Λf∆f,1P1∆f,1P1∆f,1Λf ]
−1

Λf∆f,1P1∆f,1ϕif +Op(Ξ
−1
NT ) +Op

(
Ξ−1
NT

)
ϕig

= ϕ0,i + ḡ′ϕig +Op(T
−1/2) + f ′

tP1∆f,1Λ
′
f

× [Λf∆f,1P1∆f,1P1∆f,1Λf ]
−1

Λf∆f,1P1∆f,1ϕif +Op(Ξ
−1
NT ) +Op

(
Ξ−1
NT

)
ϕig

= ϕ0,i + ḡ′ϕig + f ′
tϕif +Op(Ξ

−1
NT ) +Op

(
Ξ−1
NT

)
ϕig

∴ ε̂it = xit − x̂it =
(
ϕ0,i + g′

tϕig + f ′
tϕif + εit

)
−
(
ϕ0,i + ḡ′ϕig + f ′

tϕif +Op(Ξ
−1
NT ) +Op

(
Ξ−1
NT

)
ϕig
)

=⇒ ε̂it −
(
εit + g′

tϕig − ḡ′ϕig
)
= Op(Ξ

−1
NT ) +Op

(
Ξ−1
NT

)
ϕig

=⇒ ε̂it −
(
εit + g′

tϕig − ḡ′ϕig
)
= Op(Ξ

−1
NT ).

The stochastic orders for the matrices N−ψfT−1 (xt − x̄)WXZ and N−2ψfT−3W ′
XZSXXWXZ were

obtained in Lemma 7 and 8 respectively. Noting that

∑T
s=1 εis
T

= Op(T
−1/2) by Lemma 1.3, we obtain

the second equality.

Lemma 10. Define η̃ ≡ û− ε̂γ, where û = y − ŷf = y − ιT ȳ − JT F̂ β̂.

max
i

(
ΞNT
T

)
ε̂′iη̃ = max

i

(
ΞNT
T

)
ε′iη +Op(1).

Proof: Adding and subtracting terms,

max
i

(
ΞNT
T

)
ε̂iη̃ =

(
ΞNT
T

)
max
i

(
εi + JTgϕig

)′
η +

(
ΞNT
T

)
max
i

(
εi + JTgϕig

)′
(η̃ − η)

+

(
ΞNT
T

)
max
i

(
ε̂i −

(
εi + JTgϕig

))′
η +

(
ΞNT
T

)
max
i

(
ε̂i −

(
εi + JTgϕig

))′
(η̃ − η)

=I + II + III + IV.

We show that I = maxi

(
ΞNT
T

)
ε′iη +Op(1) and II, III and IV are Op(1).

Item I:

max
i

(
ΞNT
T

)(
εi + JTgϕig

)′
η =

(
ΞNT
T

)
max
i

ε′iη +

(
ΞNT
T

)(
max
i

ϕig

)
g′JTη

=max
i

(
ΞNT
T

)
ε′iη +Op(1). (A4.1)
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Where the final line follows from the fact that
ΞNT
T

≤ 1√
T

, maxi ϕig is Op(1) by Assumption 7.1 and

g′JTη

T 1/2
is Op(1) by Lemma 2.2.

Item II : Note that η − η̃ =
(
y − yf − εγ

)
−
(
y − ŷf − ε̂γ

)
=
(
ŷf − yf

)
+ (ε̂− ε)γ. Therefore,

(
ΞNT
T

)(
εi + JTgϕig

)′
(η̃ − η) =

(
ΞNT
T

)
(η̃ − η)

′ (
εi + JTgϕig

)
=

(
ΞNT
T

)(
ŷf − yf

)′
εi +

(
ΞNT
T

)(
ŷf − yf

)′
JTgϕig

+

(
ΞNT
T

)
γ′ (ε̂− ε)

′
εi +

(
ΞNT
T

)
γ′ (ε̂− ε)

′
JTgϕig

=Ai + Bi + Ci +Di.

Notice that terms Ai,Bi, Ci and Di are all scalars. Therefore Ai = ∥Ai∥1 = ∥Ai∥∞. Same holds for

Bi, Ci and Di . We use this fact throughout the proof. We look at all these terms separately. From

Lemma 2 and the expression for y in the proof of Theorem 1(a) and Theorem 1(b), we have that(
ŷf − yf

)′
= Op(Ξ

−1
NT )F

′JT +Op(1)
(
F̂C −Λf∆fPff ′

)
JT +γ′

s(ιT ε̄s)
′ +(ιT η̄)

′. Therefore,

Ai =

(
ΞNT
T

)(
ŷf − yf

)′
εi

=ΞNTOp(Ξ
−1
NT )

(
T−1F ′JTεi

)
+Op(1)

(
ΞNT
T

)(
F̂C −Λf∆fPff ′

)
JTεi +

(
ΞNT
T

)
γ′
s(ιT ε̄s)

′εi +

(
ΞNT
T

)
(ιT η̄)

′εi

=A1i +A2i +A3i +A4i.

The first term A1i can be expanded as,

A1i =ΞNTOp(Ξ
−1
NT )

(
T−1F ′JTεi

)
=Op(1)

(
T−1F ′JTεi

)
=Op(1)

(
T−1F ′εi

)
−Op(1)

(
T−1F ′ιT ε̄i

)
.

Therefore, by Triangle inequality,

∥A1i∥∞ ≤ ∥Op(1)∥∞∥ 1
T
F ′εi∥∞ + ∥ 1

T
Op(1)F

′∥∞∥ιT ε̄i∥∞.

Since the Op(1) matrix listed above is a finite dimensional matrix, it’s L∞ norm will have the same

order as it’s elements. Also, Op(1)F
′ is a L × T ,(L < ∞) matrix with all elements having bounded

second moments given Assumptions 2 and 3. Hence, its L∞ norm will scale with at most T and therefore

∥ 1
T
Op(1)F

′∥∞ has a maximum order Op(1). ιT ε̄i has all same elements, hence its L∞ norm is equal to
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any element in this vector. Hence, we have, Therefore

max
i

∥A1i∥∞ ≤ ∥Op(1)∥∞ max
i

∥ 1
T
F ′εi∥∞ + ∥ 1

T
Op(1)F

′∥∞ max
i

|ιT ε̄i|

= Op

(
(logN)r3√

T

)
+Op

(
(logN)r2√

T

)
.

The final line follows from Assumptions 7.3 and 7.4. Hence by Assumption 10, maxiA1i is Op(1).

We can expand A2i using Lemma 4 as

A2i =Op(1)

(
ΞNT
T

)(
F̂C −Λf∆fPff ′

)
JTεi

=Op(1)ΞNT {Λ
(
N−ψfT−1F ′JTεJNΦ

) (
T−1F ′JTεi

)
+
(
T−1ω′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTεi

)
+
(
N−ψfT−1ω′JTεJNΦ

) (
T−1F ′JTεi

)
+ ζ

(
T−1ε′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTεi

)
+ ζ

(
N−ψfT−1ε′JTεJNΦ

) (
T−1F ′JTεi

)
+Λ

(
T−1F ′JTF

) (
N−ψfT−1Φ′JNε′JTεi

)
+
(
T−1ω′JTF

) (
N−ψfT−1Φ′JNε′JTεi

)
+

N1−ψf

δNT
√
T
Λ
(
δNTN

−1T−3/2F ′JTεJNεJTεi

)
+

N1−ψf

δNT
√
T

(
δNTN

−1T−3/2ω′JTεJNεJTεi

)
+

N1−ψf

δNT
√
T
ζ
(
δNTN

−1T−3/2ε′JTεJNεJTεi

)
+ ζ

(
T−1ε′JTF

) (
N−ψfT−1Φ′JNε′JTεi

)
+Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦg

) (
T−1g′JTεi

)
+Λf

(
T−1f ′JTg

) (
N−ψfΦ′

gJNΦf

) (
T−1f ′JTεi

)
+
Nψg−ψf
√
T

Λf

(
T−1/2f ′JTg

) (
N−ψgΦ′

gJNΦg

) (
T−1g′JTεi

)
}.

Given that ζ has finitely many non-zero entries by Assumption 9, ∥ζ∥∞ and ∥ζ∥1 are both Op(1).

Also, given the orders derived in 2 and 6, and the fact that ΞNT < δNT , we can say that A2i is a sum

of 3 type of terms.

1. A2i.1: Op(1)
(
T−1F ′JTεi

)
where the Op(1) term is a finite dimensional matrix.

2. A2i.2:
N1−ψf
√
T

Dεi
T

where D is a L × T Op(1) matrix, invariant across t and i, with all terms

having bounded second moments.

3. A2i.3: ΞNTOp(1)
(
N−ψfT−1Φ′

fJNε′JTεi
)
+ ΞNTOp(T

−1/2)
(
N−ψfT−1Φ′

gJNε′JTεi
)
, where the

Op(1) and Op(T
−1/2) terms are finite dimensional matrices invariant across t and i.10

For A2i.1 , we follow the same proof as in A1i to show that its maximum value over i is bounded under

Assumption 10.

10This follows from the observation that Λ
(
T−1F ′JTF

) (
N−ψf T−1Φ′JNε′JT εi

)
=

Λf
(
T−1f ′JT f

) (
N−ψf T−1Φ′

fJNε′JT εi
)

+ T−1/2Λf
(
T−1/2f ′JT g

) (
N−ψfΦ′

gJNε′JT εi
)

and noticing that

the rest of the terms pre-multiplying
(
N−ψf T−1Φ′JNε′JT εi

)
are Op(T−1/2).
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For A2i.2, we have,

∥∥∥∥N1−ψf
√
T

Dεi
T

∥∥∥∥
∞

≤ N1−ψf
√
T

∥∥∥∥DT
∥∥∥∥
∞

∥εi∥∞

= Op(1)
N1−ψf
√
T

max
t

|εit|.

We get the final equality from the fact that D is L×T matrix with all elements having bounded second

moments given Assumptions 2 and 3. Hence, its L∞ norm will scale with at most T and therefore

∥∥∥∥DT
∥∥∥∥
∞

will have a maximum order Op(1). Hence we have,

max
i

∥∥∥∥N1−ψf
√
T

Dεi
T

∥∥∥∥
∞

≤ Op(1)
N1−ψf
√
T

max
i,t

|εit|.

Under Assumption 10, we have
N1−ψf
√
T

[(logN)r1 + (log T )r1 ] is O(1). Hence,

max
i

∥∥∥∥N1−ψf
√
T

Dεi
T

∥∥∥∥
∞

is Op(1).

To show that maxiA2i.3 is Op(1), we first show that maxi

[
ΞNT

∥∥N−ψfT−1Φ′
fJNε′JTεi

∥∥
1

]
is Op(1)

given assumptions of our model. to do so, we derive the stochastic order of a generic (m, 1)th element

of the Kf × 1 matrix (maxi ΞNTN
−ψfT−1Φ′

fJNε′JTεi). Since Kf is finite and the stochastic order is

invariant across m ∈ {1, . . . ,Kf}, the stochastic order of a generic element will be equal to the stochastic

order of the L1 norm the matrix.

A generic (m, 1)th element of the Kf × 1 matrix (maxi ΞNTN
−ψfT−1Φ′

fJNε′JTεi) is bounded by

(ΞNTN
−ψf/2T−1/2)

max
i

∣∣∣∣∣∣N−ψf/2T−1/2
∑
j,t

ϕjf (m) εjtεit

∣∣∣∣∣∣


+ (ΞNTN
−1/2T−1/2)

∣∣∣∣∣N−ψf
∑
l

ϕlf (m)

∣∣∣∣∣
max

i

∣∣∣∣∣∣N−1/2T−1/2
∑
j,t

εitεjt

∣∣∣∣∣∣


+ (ΞNTN
−ψf/2T−1/2)

∣∣∣∣∣∣N−ψf/2T−1
∑
j,s

ϕjf (m) εjs

∣∣∣∣∣∣
(
max
i

∣∣∣∣∣∑
t

1√
T
εit

∣∣∣∣∣
)

+ (ΞNTN
−1/2T−1)

∣∣∣∣∣N−ψf
∑
l

ϕlf (m)

∣∣∣∣∣
∣∣∣∣∣∣N−1/2T−1/2

∑
j,s

εjs

∣∣∣∣∣∣
(
max
i

∣∣∣∣∣∑
t

1√
T
εit

∣∣∣∣∣
)

=a+ b+ c+ d.

By the definition of ΞNT , ΞNTN
−ψf/2 = O(1), which implies a = Op

(
(logN)r4√

T

)
by Assumption

7.5. b = Op

(
(logN)r5√

T

)
by Assumptions 2.2 and 7.6. c = Op

(
(logN)r2√

T

)
by Assumption 3.7 and

72



7.3. d = Op

(
(logN)r2

T

)
by Lemma 1.3 and Assumptions 2.2 and 7.3. Therefore, by Assumption

10, maxi

[
ΞNT

∥∥N−ψfT−1Φ′
fJNε′JTεi

∥∥
1

]
is Op(1). Given Assumption 6, similar reasoning would

establish, maxi

[
ΞNTT

−1/2
∥∥N−ψfT−1Φ′

gJNε′JTεi
∥∥
1

]
is Op(1). Hence, we have

ΞNT max
i

{∥∥Op(1)
(
N−ψfT−1Φ′

fJNε′JTεi
)∥∥

1
+
∥∥Op(1)

(
N−ψfT−1Φ′

fJNε′JTεi
)∥∥

1

}
≤∥Op(1)∥1

(
max
i

[
ΞNT

∥∥N−ψfT−1Φ′
fJNε′JTεi

∥∥
1

]
+max

i

[
ΞNTT

−1/2
∥∥N−ψfT−1Φ′

gJNε′JTεi
∥∥
1

])
=Op(1) +Op(1).

Hence A2i.3 = Op(1).

For A3i, since
ΞNT
T

≤ 1√
T
, we have,

(
ΞNT
T

)
γ′
s(ιT ε̄s)

′εi ≤
(

1√
T

)
γ′
s(ιT ε̄s)

′εi and we have

(
1√
T

)
γ′
s(ιT ε̄s)

′εi =
∑
j∈S

γj ε̄j

(
1√
T

∑
t

εit

)
.

Therefore,

max
i

(
1√
T

)
γ′
s(ιT ε̄s)

′εi ≤
∑
j∈S

γj ε̄j

(
max
i

∣∣∣∣∣ 1√
T

∑
t

εit

∣∣∣∣∣
)

=
∑
j∈S

Op

(
1√
T

)
Op((logN)r2)

= Op

(
(logN)r2√

T

)
= Op(1),

where the second last line line follows from Assumption 7 and Lemma 1.3. The second last line fol-

lows from the fact that the cardinality of S is bounded by Assumption 9. The final line follows from

Assumption 10.

Using a similar logic, maxi

(
ΞNT
T

)
(ιT η̄)

′εi is Op(1). Hence maxiAi =maxi(A1i +A2i +A3i +A4i) is

Op(1).

Next, we show that maxi Bi = Op(1).

Bi =
(
ΞNT
T

)(
ŷf − yf

)′
JTgϕig

=ΞNTOp(Ξ
−1
NT )

(
T−1F ′JTgϕig

)
+Op(1)

(
ΞNT
T

)(
F̂C −Λf∆fPff ′

)
JTgϕig

+

(
ΞNT
T

)
γ′
s(ιT ε̄s)

′JTgϕig +

(
ΞNT
T

)
(ιT η̄)

′JTgϕig

=B1i + B2i + B3i + B4i.
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B1i . . .B4i depend on i through ϕi only. Since ∀m, maxi ϕi(m) = Op(1) by Assumption 7.1, it suffices to

show that B1i + B2i + B3i + B4i = Op(1) in order to prove maxi Bi = Op(1). B1i = Op(1) by assumption

2.1. B3i and B4i are Op(1) by Assumption 2.1 and lemmas 1.3 and 1.4. We show B2i = Op(1) below.

Using Lemma 4, we can expand B2i as,

B2i =Op(1)

(
ΞNT
T

)(
F̂C −Λf∆fPff ′

)
JTgϕig

=Op(1)ΞNT {Λ
(
N−ψfT−1F ′JTεJNΦ

) (
T−1F ′JTgϕig

)
+
(
T−1ω′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTgϕig

)
+
(
N−ψfT−1ω′JTεJNΦ

) (
T−1F ′JTgϕig

)
+ ζ

(
T−1ε′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTgϕig

)
+ ζ

(
N−ψfT−1ε′JTεJNΦ

) (
T−1F ′JTgϕig

)
+Λ

(
T−1F ′JTF

) (
N−ψfT−1Φ′JNε′JTgϕig

)
+
(
T−1ω′JTF

) (
N−ψfT−1Φ′JNε′JTgϕig

)
+
N1−ψf
√
T

Λ
(
N−1T−3/2F ′JTεJNεJTgϕig

)
+
N1−ψf
√
T

(
N−1T−3/2ω′JTεJNεJTgϕig

)
+
N1−ψf
√
T

ζ
(
N−1T−3/2ε′JTεJNεJTgϕig

)
+ ζ

(
T−1ε′JTF

) (
N−ψfT−1Φ′JNε′JTgϕig

)
+Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦg

) (
T−1g′JTgϕig

)
+Λf

(
T−1f ′JTg

) (
N−ψfΦ′

gJNΦf

) (
T−1f ′JTgϕig

)
+
Nψg−ψf
√
T

Λf

(
T−1/2f ′JTg

) (
N−ψgΦ′

gJNΦg

) (
T−1g′JTgϕig

)
}

=Op(1)ΞNTOp(Ξ
−1
NT ) = Op(1).

The final line follows from Lemma 2 and 6 and the fact that ζ has finitely many non-zero entries by

Assumption 9.

maxi Ci = Op(1) follows from similar argument as for maxiAi = Op(1). maxi Ci = maxi γ
′ (ε̂− ε)

′
εi =

maxi γ
′
S (ε̂S − εS)

′
εi. The expression for ε̂S − εS can be obtained using lemma 9 as ∀i ∈ S, ϕig = 0.

The proof then follows similar steps as for Ai.

Similarly, maxiDi = Op(1) follows from an analogous argument as for maxi Bi = Op(1). Therefore

II = maxi(Ai + Bi + Ci ++Di) is Op(1).

We now show item III :

(
ΞNT
T

)
maxi

(
ε̂i −

(
εi + JTgϕig

))′
η is Op(1).

From the discussion leading upto lemma 9, we can express

(
ΞNT
T

)
maxi

(
ε̂i −

(
εi + JTgϕig

))′
η as a
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sum of three terms.

max
i

(
ΞNT
T

)(
ε̂i −

(
εi + JTgϕig

))′
η

= max
i

(
N−ψfT−2W ′

XZSXxi −Λf∆fPf∆fϕif

)′

Op(1)Λf∆fPf
f ′JTη

T
ΞNT

+max
i

(
Λf∆fPf∆fϕif

)′

Op(1)
(
F̂C −Λf∆fPff ′

)
JTη

(
ΞNT
T

)

+Op(Ξ
−1
NT )

(
ΞNT
T

∑
t

ηt+h

)

= P +Q+R.

Since
ΞNT
T

≤ 1√
T
, we have Λf∆fPf

f ′JTη

T
ΞNT ≤ Λf∆fPf

f ′JTη√
T

= Op(1) by Lemma 1.2.

Therefore we have P = maxi(N
−ψfT−2W ′

XZSXxi − Λf∆fPf∆fϕif )
′Op(1). We need to show that

maxi(N
−ψfT−2W ′

XZSXxi −Λf∆fPf∆fϕif ) = Op(1).

N−ψfT−2W ′
XZSXxi −Λf∆fPf∆fϕif

= Λ
(
T−1F ′JTF

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTεi

)
+Λ

(
T−1F ′JTF

) (
N−ψfT−1Φ′JNε′JTεi

)
+Λ

(
N−ψfT−1F ′JTεJNΦ

) (
T−1F ′JTεi

)
+
N1−ψf
√
T

Λ
(
N−1T−3/2F ′JTεJNε′JTεi

)
+
N1−ψf
√
T

(
N−1T−3/2ω′JTεJNε′JTεi

)
+
(
T−1ω′JTF

) (
N−ψfT−1Φ′JNε′JTεi

)
+
(
N−ψfT−1ω′JTεJNΦ

) (
T−1F ′JTεi

)
+
(
T−1F ′JTω

) (
N−ψfΦ′JNΦ

) (
T−1F ′JTεi

)
+Op(Ξ

−1
NT )ϕi.

The last term Op(Ξ
−1
NT )ϕi captures all the terms in the expansion which have a maximum order of Ξ−1

NT

and depend on i through ϕi only. Therefore maxi(N
−ψfT−2W ′

XZSXxi − Λf∆fPf∆fϕif ) = Op(1)

since maxi ϕi is Op(1) by Assumption 7.1. Stochastic order for the max of other terms follows similar

arguments as in Item I for the term A.

For Q, note that since maxiΛf∆fPf∆fϕif = Op(1) by Assumption 7.1, it suffices to show that
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(
F̂C −Λf∆fPff ′

)
JTη

(
ΞNT
T

)
= Op(1), which we show below.

ΞNT
T

(
F̂C −Λf∆fPff ′

)
JTη

=Λ
(
T−1F ′JTF

)(
N−ψf

(
ΞNT
T

)
Φ′JNε′JTη

)
+Λ

(
N−ψfT−1F ′JTεJNΦ

)((ΞNT
T

)
F ′JTη

)
+
(
T−1ω′JTF

) (
N−ψfΦ′JNΦ

)((ΞNT
T

)
F ′JTη

)
+
(
N−ψfT−1ω′JTεJNΦ

)((ΞNT
T

)
F ′JTη

)
+ ζ

(
T−1ε′JTF

) (
N−ψfΦ′JNΦ

)((ΞNT
T

)
F ′JTη

)
+ ζ

(
N−ψfT−1ε′JTεJNΦ

)((ΞNT
T

)
F ′JTη

)
+ ΞNTΛ

(
T−1F ′JTF

) (
N−ψf/2T−1Φ′JNε′JTη

)
+

((
ΞNT
T

)
ω′JTF

)(
N−ψfT−1Φ′JNε′JTη

)
+ ΞNT

N1−ψf
√
T

Λ
(
N−1T−3/2F ′JTεJNεJTη

)
+ ΞNT

N1−ψf
√
T

(
N−1T−1/2ω′JTεJNεJTη

)
+ ΞNT

N1−ψf
√
T

ζ
(
N−1T−1/2ε′JTεJNεJTη

)
+Λf

(
T−1f ′JTf

) (
N−ψfΦ′

fJNΦg

)((ΞNT
T

)
g′JTη

)
+Λf

(
T−1f ′JTg

) (
N−ψfΦ′

gJNΦf

)((ΞNT
T

)
f ′JTη

)
+
Nψg−ψf
√
T

Λf

(
T−1/2f ′JTg

) (
N−ψgΦ′

gJNΦg

)((ΞNT
T

)
g′JTη

)
=Op(1).

Since
ΞNT
T

≤ 1√
T

and
N1−ψf
√
T

= O(1), the final equality comes from rates derived in Lemma 2, 6,

employing the fact that ζ has finitely many non-zero entries by Assumption 9. IV = Op(1) can be

deduced similarly and this concludes the proof.

Theorem 5 Let the regularization parameter in Stage-2 Pass 1 regression be given by λ := 2

√
c+ κ logN

ΞNT
,

c > 0 and κ is defined in assumption 10 . Then, if Assumptions 1-10 hold, w.p at least 1−exp
[
− c
κ

]
+o(1),

we have,

1

T
∥ε̂γ̂ − εγ∥2 = Op

(√
logN

ΞNT

)
.

Proof: First stage regression gives initial forecast ŷf = ιT ȳ + JT F̂ β̂. Let û = (û1+h, . . . , ûT+h)
′
denote

the vector of stacked residuals from the first stage regression. û = y − ŷf = y − ιT ȳ − JT F̂ β̂. The

second stage involves the Lasso regression of û on ε̂, where both û and ε̂ are generated regressors ,i.e.,

γ is estimated by the following penalized regression,

γ̂ = argmin
γ

{
∥ û− ε̂γ∥22/T + λ∥γ∥1

}
.
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The lasso solution must satisfy

∥ û− ε̂γ̂∥22/T + λ∥γ̂∥1 ≤ ∥ û− ε̂γ∥22/T + λ∥γ∥1. (A4.2)

Since η̃ = û− ε̂γ( Defined in Lemma 9), Equation A4.2 can be written as,

(û− ε̂γ̂ − η̃)
′
(û− ε̂γ̂ + η̃)

T
+ λ∥γ̂∥1 − λ∥γ∥1 ≤ 0.

Substituting values of η̃ and û, this simplifies to

(−ε̂ (γ̂ − γ))
′
(−ε̂ (γ̂ − γ) + 2η̃)

T
+ λ∥γ̂∥1 − λ∥γ∥1 ≤ 0.

This gives the “Basic Inequality” for Lasso. See Bühlmann & Van De Geer [2011] (Page 103)

∥ε̂ (γ̂ − γ)∥22 /T + λ∥γ̂∥1 ≤ 2 (γ̂ − γ)
′
ε̂′η̃/T + λ ∥γ∥1 .

Note that,

2
∣∣(γ̂ − γ)

′
ε̂′η̃
∣∣ ≤ ( max

1≤j≤N
2
∣∣ε̂′j η̃∣∣) ∥γ̂ − γ∥1 .

Next, we show that for an appropriate choice λ0 the set

T :=

{
max

1≤j≤N

2
∣∣ε̂′j η̃∣∣
T

≤ λ0

}

has a high probability.

Let λ0 :=

√
c+ κ logN

ΞNT
, From Assumption 10,

P(T ) = P

(
max

1≤j≤N

2
∣∣ε̂′j η̃∣∣
T

≤
√
c+ κ logN

ΞNT

)

= 1− P
(

max
1≤j≤N

ΞNT
T

2
∣∣ε̂′j η̃∣∣ ≥√c+ κ logN

)
≥ 1− P

(
max

1≤j≤N

2
∣∣ε̂′j η̃∣∣√
T

≥
√
c+ κ logN

)

≥ 1− P
((

max
1≤j≤N

2 |εj ′η|√
T

)
+ |Op(1)| ≥

√
c+ κ logN

)
≥ 1−N exp

[
−(c+ κ logN)

κ

]
+ o(1)

= 1−
(
exp

(
−c
κ

)
+ o(1)

)
.

The third inequality follows from the fact that
ΞNT
T

≤ 1√
T
, the fourth inequality comes from Lemma
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10 and the final inequality is by Assumption 10. By making c arbitrarily large, the probability can be

made arbitrarily small.

We have on T , with λ = 2λ0,

2
∥ε̂ (γ̂ − γ)∥22

T
+ λ ∥γ̂sc∥1 ≤ 3λ ∥γ̂s − γs∥1 . (A4.3)

Proof: See Lemma 6.3, page 105 , Bühlmann & Van De Geer [2011].

Define ∆ε̂ := ε̂′ε̂/T . Given that the set of ‘relevant’ idiosyncratic terms S has a fixed cardinality, it

is easy to show that if the comparability condition for set S, holds w.r.t ∆ε,g (defined in Assumption

10(c)) it implies that the compatibility condition also holds for set S w.r.t ∆ε̂.

Proof: Through similar steps as in Lemma 10, we can show that

max
ij

(
1

T

)
ε̂′iε̂j = max

ij

(
(εi + JTgΦig)

′
(εj + JTgΦjg)

T

)
+ op(1). (A4.4)

Hence,

max
ij

∆ij
ε̂ = max

ij
∆ij
ε,g + op(1). (A4.5)

Compatibility condition for set S w.r.t ∆ε,g implies, for all N×1 vectors Θ satisfying ∥ΘSc∥1 < 3 ∥ΘS∥1,

we have,

∥ΘS∥21 <
(
Θ′∆ε,gΘ

)
|S|/ν20 ,

which equivalently can be stated as,

1 <

(
Θ′∆ε,gΘ

)
|S|

∥ΘS∥21 ν20
.

Therefore we have,

1 <

(
Θ′∆ε,gΘ

)
|S|

∥ΘS∥21 ν20

< Co
∑
i,j

ΘiΘj

∥ΘS∥21

(
∆ij
ε,g

)
< Co

∑
i,j

ΘiΘj

∥ΘS∥21

(
∆ij
ε̂

)
+max

ij
Co

(
∆ij
ε,g −∆ij

ε̂

)∑
i,j

ΘiΘj

∥ΘS∥21

< Co
∑
i,j

ΘiΘj

∥ΘS∥21

(
∆ij
ε̂

)
+ op(1)O(1)

< Co
∑
i,j

ΘiΘj

∥ΘS∥21

(
∆ij
ε̂

)
+ op(1). (A4.6)

78



The second last line follows from A4.5. Co =
|S|
ν20

is a constant.
∑
i,j

ΘiΘj

∥ΘS∥21
is bounded since we need to

look at only those vectors which satisfy ∥ΘSc∥1 < 3 ∥ΘS∥1. Therefore, compatibility condition for the

S w.r.t ∆ε,g implies that compatibility condition for the S holds w.r.t ∆ε̂ with probability approaching

one.

Using equation A4.3 and Assumption 10(b), A4.6, we have, on T , with probability approaching one, for

λ = 2λ0,

∥ε̂ (γ̂ − γ)∥22 /T + λ ∥γ̂ − γ∥1 ≤ 4λ2|S|/ν20 . (A4.7)

Proof:

2 ∥ε̂ (γ̂ − γ)∥22 /T + λ ∥γ̂ − γ∥1 = 2 ∥ε̂ (γ̂ − γ)∥22 /T + λ ∥γ̂s − γs∥1 + λ ∥γ̂sc∥1

≤ 4λ ∥γ̂s − γs∥1

≤ 4λ
√
|S| ∥ε̂ (γ̂ − γ)∥2 /

(√
Tν0

)
≤ ∥ε̂ (γ̂ − γ)∥22 /T + 4λ2|S|/ν20 .

where we have used equation A4.3 in the first inequality and the compatibility condition (Assumption

10) is used in the second inequality.11 The Last inequality uses that fact that for any u, v, 4uv ≤ u2+4v2.

Concluding from the discussion above, we have that, Using the regularization parameter λ = 2λ0, on the

set T , w.p approaching one, we have

∥ε̂ (γ̂ − γ)∥22 /T ≤ 4λ2|S|/ν20

= Op(λ
2)

= Op

(
logN

ΞNT
2

)
. (A4.8)

The final equality uses the fact that |S| is finite. Finally, using triangle inequality we have,

1

T
∥ε̂γ̂ − εγ∥2 ≤ 1

T
∥ε̂γ̂ − ε̂γ∥2 +

1

T
∥(ε̂s − εs)γs∥2

≤ 1

T
∥ε̂γ̂ − ε̂γ∥2 +Op

(
Ξ−1
NT

)
= Op

(√
logN

ΞNT

)
+Op

(
Ξ−1
NT

)
= Op

(√
logN

ΞNT

)
.

We have used triangle inequality in first step and Lemma 9 in the second step, noting that for j ∈ {i|γi ̸=

0}, ϕjg = 0 by Assumption 1. The third step invokes equation A4.8.

Corollary 5.1 follows directly using triangle inequality combining Theorem 5 and 1 (b).

11In the compatibility condition we have used Θ = γ̂ − γ since γ̂ − γ satisfies the condition ∥γ̂sc − γsc∥1 = ∥γ̂sc∥1 ≤
3 ∥γ̂s − γs∥1 by A4.3
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This Online Appendix B provides additional simulation results not included in the main paper.

To differentiate the sections of the Online Appendix from those in the main paper, we refer to this

as Online Appendix B and label the sections accordingly, as Section B1 and Section B2. Section B1

presents additional simulation results that complement the subset of results included in the main paper.

Specifically, this section provides tables comparing the relative performance of the five competing methods

discussed in Section 5 of the main paper, under various sample sizes and factor strength combinations,

which were not included in the main paper, using out-of-sample R2 as the evaluation metric. Section

B2 focuses on the true and false positive rates from Stage 2 of PCR LASSO and 3PRF LASSO. It also

discusses the underlying reasons behind the findings presented in the corresponding tables.

B1 Additional Simulation Results

This section presents out-of-sample R2 comparisons across various competing methods, supplementing

the results provided in the main paper.
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Table B1: OOS R-squared across competing methods

Kf = 1, Kg = 5 N = 100, T = 100 ψf = 1, ψg = 0.7

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61433 0.35654 0.38186 0.45527 0.3915 0.47442

0.3 0.9 0.3 0 0.61414 0.35542 0.39428 0.47707 0.27148 0.47751

0.3 0.9 0.3 1 0.64643 0.35486 0.40873 0.53051 0.45829 0.54032

0.3 0.9 0.9 0 0.61432 0.35158 0.38538 0.46182 0.2961 0.47037

0.3 0.9 0.9 1 0.65035 0.37578 0.41963 0.53049 0.45851 0.54596

0.9 0.3 0.3 0 0.61625 0.3904 0.42398 0.48664 0.35929 0.50052

0.9 0.3 0.3 1 0.64961 0.37989 0.44089 0.54063 0.48933 0.55786

0.9 0.3 0.9 0 0.62509 0.41418 0.43371 0.51096 0.33858 0.51809

0.9 0.3 0.9 1 0.64712 0.39347 0.461 0.54584 0.55782 0.56922

Notes: Kf , Kg , ρf ρg, a , d ψf , ψg are defined in Section Section 5 of the main paper. Oracle denotes

the infeasible regression, as described in Section 5 of the main paper. PCR denotes the regression of y

on first ‘K ′ principal components, where K = Kf +Kg. 3PRF denotes the auto-proxy 3PRF with Kf

auto-proxies. LASSO denotes the the LASSO regression of y on X. 3PRF+L is 3PRF LASSO procedure

where Stage 1 (3PRF) uses Kf proxies. PCR+L is analogously a 2 Stage regression where Stage 1 is

PCR involving leading K = Kf +Kg PCs as predictors, and Stage 2 is a LASSO regression involving

the idiosyncratic components estimated using principal component method. The highest R2 value across

competing methods in in bold.
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Table B2: OOS R-squared across competing methods

Kf = 1, Kg = 5 N = 100, T = 100 ψf = 0.7, ψg = 1

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.62037 0.19857 0.026841 0.35477 0.34726 0.36007

0.3 0.9 0.3 0 0.62109 0.13947 -0.051284 0.30176 0.2065 0.28183

0.3 0.9 0.3 1 0.64536 -0.012249 0.058237 0.24102 0.037048 0.12446

0.3 0.9 0.9 0 0.61872 0.10201 -0.027638 0.29411 0.14278 0.29521

0.3 0.9 0.9 1 0.64162 -0.0055797 0.050517 0.23895 -0.0015838 0.15191

0.9 0.3 0.3 0 0.61673 0.22198 0.021928 0.35361 0.2861 0.37247

0.9 0.3 0.3 1 0.648 0.032885 0.070533 0.245 0.052431 0.18859

0.9 0.3 0.9 0 0.6124 0.14714 -0.001615 0.3306 0.28203 0.34898

0.9 0.3 0.9 1 0.64875 0.033361 0.086025 0.26294 0.1633 0.20486

Notes: See Table B1

Table B3: OOS R-squared across competing methods

Kf = 1, Kg = 5 N = 100, T = 100 ψf = 0.7, ψg = 0.7

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61463 0.28231 0.32482 0.33067 0.36956 0.36339

0.3 0.9 0.3 0 0.6106 0.26877 0.31604 0.32014 0.19992 0.35601

0.3 0.9 0.3 1 0.64346 0.044112 0.2123 0.26564 0.14649 0.21404

0.3 0.9 0.9 0 0.62283 0.25992 0.31492 0.3206 0.29171 0.35449

0.3 0.9 0.9 1 0.65094 0.056318 0.2326 0.29303 0.20639 0.23536

0.9 0.3 0.3 0 0.62236 0.31688 0.35418 0.35792 0.29901 0.39243

0.9 0.3 0.3 1 0.64945 0.066358 0.22229 0.27882 0.13716 0.22685

0.9 0.3 0.9 0 0.616 0.27749 0.34104 0.33787 0.24626 0.37674

0.9 0.3 0.9 1 0.64735 0.065195 0.21686 0.27765 0.086635 0.21927

Notes: See Table B1
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Table B4: OOS R-squared across competing methods

Kf = 1, Kg = 4 N = 200, T = 100 ψf = 1, ψg = 0.7

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61498 0.36532 0.38259 0.43896 0.18138 0.43232

0.3 0.9 0.3 0 0.61133 0.35176 0.37822 0.40992 0.17245 0.4226

0.3 0.9 0.3 1 0.64515 0.35478 0.39234 0.51018 0.33696 0.5313

0.3 0.9 0.9 0 0.62544 0.38001 0.39697 0.44561 0.20357 0.4632

0.3 0.9 0.9 1 0.64217 0.3485 0.39073 0.51056 0.43126 0.54387

0.9 0.3 0.3 0 0.62297 0.40048 0.4211 0.47033 0.27172 0.49019

0.9 0.3 0.3 1 0.64624 0.38234 0.42102 0.53193 0.46556 0.55824

0.9 0.3 0.9 0 0.61829 0.41585 0.43229 0.48002 0.26581 0.48259

0.9 0.3 0.9 1 0.6423 0.39127 0.42465 0.54416 0.41208 0.56292

Notes: See Table B1

Table B5: OOS R-squared across competing methods

Kf = 1, Kg = 4 N = 200, T = 100 ψf = 0.7, ψg = 1

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61466 0.256 -0.035535 0.31675 0.12319 0.33108

0.3 0.9 0.3 0 0.61903 0.20892 -0.081435 0.27765 0.15013 0.2842

0.3 0.9 0.3 1 0.6482 -0.035068 -0.039213 0.21907 -0.1494 0.083494

0.3 0.9 0.9 0 0.61784 0.053703 -0.063199 0.27743 0.023651 0.28428

0.3 0.9 0.9 1 0.64377 -0.038441 -0.03367 0.18877 -0.21727 0.080604

0.9 0.3 0.3 0 0.61121 0.27614 -0.032991 0.30132 0.18472 0.30588

0.9 0.3 0.3 1 0.64674 -0.0084072 0.014111 0.23572 -0.061222 0.1673

0.9 0.3 0.9 0 0.61696 0.074444 -0.038879 0.28889 0.066584 0.29957

0.9 0.3 0.9 1 0.64142 -0.016026 -0.007846 0.22247 -0.088668 0.14458

Notes: See Table B1
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Table B6: OOS R-squared across competing methods

Kf = 1, Kg = 4 N = 200, T = 100 ψf = 0.7, ψg = 0.7

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61932 0.29616 0.33059 0.2822 0.084354 0.358

0.3 0.9 0.3 0 0.62197 0.2721 0.30555 0.26825 0.087587 0.3303

0.3 0.9 0.3 1 0.63937 0.026776 0.18495 0.23898 -0.11175 0.18665

0.3 0.9 0.9 0 0.62036 0.28196 0.33343 0.28699 0.15235 0.35928

0.3 0.9 0.9 1 0.64494 0.032535 0.18034 0.2462 -0.047994 0.17535

0.9 0.3 0.3 0 0.62134 0.3175 0.34674 0.30281 0.16036 0.36426

0.9 0.3 0.3 1 0.64952 0.028643 0.1712 0.22498 -0.03956 0.1736

0.9 0.3 0.9 0 0.61556 0.25131 0.33095 0.29357 0.14332 0.36324

0.9 0.3 0.9 1 0.64354 0.038888 0.17337 0.2202 -0.035252 0.1693

Notes: See Table B1

Table B7: OOS R-squared across competing methods

Kf = 1, Kg = 5 N = 200, T = 100 ψf = 1, ψg = 1

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61232 0.34269 0.34306 0.47326 0.17836 0.47401

0.3 0.9 0.3 0 0.61902 0.32445 0.34489 0.46046 0.11375 0.4729

0.3 0.9 0.3 1 0.64792 0.27878 0.35103 0.50075 0.25 0.49988

0.3 0.9 0.9 0 0.61772 0.2981 0.33473 0.43848 0.10742 0.44164

0.3 0.9 0.9 1 0.65412 0.27411 0.34088 0.50125 0.2229 0.5055

0.9 0.3 0.3 0 0.61779 0.38476 0.3519 0.50613 0.2393 0.50928

0.9 0.3 0.3 1 0.65111 0.3498 0.38443 0.54452 0.30552 0.53811

0.9 0.3 0.9 0 0.61669 0.39008 0.37169 0.51254 0.2184 0.52195

0.9 0.3 0.9 1 0.64782 0.34857 0.37524 0.52551 0.27174 0.53914

Notes: See Table B1
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Table B8: OOS R-squared across competing methods

Kf = 1, Kg = 5 N = 200, T = 100 ψf = 1, ψg = 0.7

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61789 0.36388 0.38592 0.458 0.1288 0.44501

0.3 0.9 0.3 0 0.62315 0.35902 0.38808 0.4257 0.044106 0.44389

0.3 0.9 0.3 1 0.65796 0.35416 0.38523 0.522 0.33721 0.54784

0.3 0.9 0.9 0 0.62192 0.35621 0.38754 0.44026 0.11799 0.45313

0.3 0.9 0.9 1 0.64294 0.35197 0.38737 0.51126 0.27666 0.53157

0.9 0.3 0.3 0 0.62255 0.39693 0.41862 0.47485 0.17845 0.48809

0.9 0.3 0.3 1 0.64586 0.39599 0.42979 0.54785 0.29334 0.56195

0.9 0.3 0.9 0 0.61844 0.40113 0.4199 0.47259 0.16775 0.48125

0.9 0.3 0.9 1 0.64592 0.38784 0.42082 0.52967 0.32144 0.56054

Notes: See Table B1

Table B9: OOS R-squared across competing methods

Kf = 1, Kg = 5 N = 200, T = 100 ψf = 0.7, ψg = 1

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.61796 0.23766 -0.026162 0.33525 0.077958 0.33206

0.3 0.9 0.3 0 0.61721 0.18744 -0.092737 0.2527 -0.060807 0.22985

0.3 0.9 0.3 1 0.64559 -0.05868 -0.052926 0.23097 -0.24908 0.099657

0.3 0.9 0.9 0 0.61714 0.03491 -0.066592 0.28017 -0.10609 0.2757

0.3 0.9 0.9 1 0.64026 -0.063361 -0.064163 0.20779 -0.37883 0.06832

0.9 0.3 0.3 0 0.62311 0.24301 -0.043626 0.29953 0.13248 0.31705

0.9 0.3 0.3 1 0.6509 -0.022621 -0.027238 0.20286 -0.35656 0.1386

0.9 0.3 0.9 0 0.61487 0.090852 -0.042113 0.28535 -0.026682 0.29

0.9 0.3 0.9 1 0.64767 -0.018289 -0.010301 0.21049 -0.19715 0.13257

Notes: See Table B1
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Table B10: OOS R-squared across competing methods

Kf = 1, Kg = 5 N = 200, T = 100 ψf = 0.7, ψg = 0.7

ρf ρg a d Oracle PCR 3PRF LASSO PCR+L 3PRF+L

0 0 0 0 0.6125 0.27678 0.30781 0.27376 -0.0011527 0.32832

0.3 0.9 0.3 0 0.62594 0.27481 0.31113 0.26177 0.00020184 0.32603

0.3 0.9 0.3 1 0.65078 0.026135 0.17729 0.20819 -0.23875 0.17715

0.3 0.9 0.9 0 0.62005 0.28532 0.31292 0.28765 0.013709 0.33589

0.3 0.9 0.9 1 0.6534 0.026949 0.16915 0.22503 -0.20486 0.17025

0.9 0.3 0.3 0 0.62205 0.32133 0.35368 0.3181 0.12265 0.38098

0.9 0.3 0.3 1 0.64725 0.040913 0.186 0.23547 -0.20607 0.18435

0.9 0.3 0.9 0 0.6152 0.24852 0.32215 0.29525 0.053405 0.34675

0.9 0.3 0.9 1 0.64766 0.042193 0.17478 0.21628 -0.22745 0.17648

Notes: See Table B1

B2 TPR/FPR in 3PRF LASSO compared to PCR LASSO

In this section, we provide the true and false positive rates of Stage 2 of 3PRF LASSO and compare them

with the corresponding rates of Stage 2 of PCR LASSO. The results are reported in Tables B11–B14.

As observed in the simulation results included in the main paper and in Section B1, 3PRF LASSO

exhibits superior performance compared to PCR LASSO in the majority of cases. This divergence in

performance becomes more pronounced when the number of predictors exceeds the sample size, i.e., when

the training sample size T = 100 is half of the cross-sectional size N = 200, compared to the case when

they are identical. The improved performance of 3PRF LASSO can be attributed to the substantially

higher false positive rates observed in PCR LASSO, as shown in Tables B11–B14.

It is noteworthy that, regarding the estimation of ‘relevant’ idiosyncratic elements, 3PRF LASSO

and PCR LASSO yield very similar results.1 However, for ‘irrelevant’ idiosyncratic elements, i.e., {εi |

γi = 0}, the estimates from our procedure differ significantly from those in the PCR setup. For PCR, it

is known that ε̂PCR
it − εit = op(1), as shown in Proposition 5 of Bai & Ng [2023]. For the 3PRF LASSO

procedure, Lemma 9 in the main Appendix shows that

ε̂3PRF
it −

(
εit + ϕ′

ig (gt − ḡ)
)
= Op(Ξ

−1
NT ),

where, according to Assumption 1, for ‘relevant’ idiosyncratic elements, ϕig = 0, leading to a result

1These results are not explicitly reported in the simulations but can be verified by regressing the estimated ‘relevant’
idiosyncratic elements from PCR and Stage 2 of 3PRF LASSO on each other and calculating the R2. In most cases, the
R2 was found to be very close to 1.
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analogous to PCR: ∀i ∈ S, ε̂3PRF
it − εit = Op(Ξ

−1
NT ) = op(1). However, for ‘irrelevant’ idiosyncratic

elements, Lemma 9 in the main Appendix indicates that the convergent limit of ε̂3PRF
it differs from

ε̂PCR
it . The estimator of idiosyncratic elements in our setup is not consistent for ‘irrelevant’ idiosyncratic

elements. However, this inconsistency is not detrimental since these predictors have zero coefficients.

Our setup inherently leads to a situation where the estimated values of ‘relevant’ idiosyncratic ele-

ments are either orthogonal or weakly correlated, while the estimated values of ‘irrelevant’ idiosyncratic

elements are highly correlated due to the presence of irrelevant factors. As noted in Zou & Hastie [2005]

and Wang et al. [2011], “When the model includes several highly correlated variables, all of which are

related to some extent to the response variable, LASSO tends to pick only one or a few of them and

shrink the rest to zero.” This implies that high correlation dampens the cardinality of the set of non-zero

coefficients in LASSO. When this high correlation occurs between the relevant and irrelevant predictors

(as in Fan et al. [2020]) or among relevant predictors, it is an undesirable feature. However, when the

correlation is high only among the irrelevant predictors, it suppresses false positive rates, making it a

desirable feature. This rationalizes the results in Tables B11–B14, where we observe higher false positive

rates in Stage 2 of the PCR LASSO procedure compared to 3PRF LASSO. To corroborate these findings,

we conducted an additional experiment. We generate i.i.d vectors xt ∈ R105, for t = 1, . . . , 100, from

a multivariate normal distribution. For each t, the first five elements of xt are uncorrelated, while the

remaining elements have a covariance matrix with diagonal entries equal to 1 and off-diagonal entries

equal to ρ. We then generate 100 values of the target variable y using the model

yt+1 =

5∑
i=1

βxit + ut+1,

where ut+1 is drawn from the N(0, 2) distribution and is serially uncorrelated. We vary the signal

strength (β) and the correlation among irrelevant predictors (ρ). The experiment is repeated 100 times,

and we record the average false and true positive rates. The results are provided in Table B15 of this

Online Appendix. Our results show that the false positive rate tends to decrease as ρ increases, regardless

of the signal level β. While this relationship is not strictly monotonic, it appears to be approximately

so. The true positive rate remains high across ρ, even at lower signal levels.

Thus, the correlation among irrelevant predictors appears to be beneficial, as it suppresses spurious

selections. This also explains the improved performance of 3PRF LASSO compared to PCR LASSO

when the number of irrelevant factors increases from four to five.
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In tables B11 -B14, we list parameter configurations (ρf , ρg, a, d) as one entry to save space. These

configurations are in the columns π, in exactly the same order as tables B1-B10.

Table B11: TPR/FPR in stage-2 of 3PRF-Lasso.

True and False Positive rates 3PRF-Lasso, N = 100, T = 100, Kf = 4

(π)
ψf = 1, ψg = 1 ψf = 1, ψg = 0.7 ψf = 0.7, ψg = 1 ψf = 0.7, ψg = 0.7

TPR FPR TPR FPR TPR FPR TPR FPR

1 0.9525 0.12469 0.8525 0.15531 0.8275 0.21594 0.5575 0.066979

2 0.95 0.11115 0.84 0.1451 0.835 0.20438 0.6425 0.078958

3 0.7225 0.086667 0.6725 0.063021 0.2125 0.11021 0.0225 0.018229

4 0.935 0.12458 0.9125 0.14323 0.865 0.21979 0.56 0.085625

5 0.6875 0.096354 0.695 0.056667 0.23 0.12677 0.02 0.023125

6 0.9425 0.1474 0.9175 0.14385 0.8675 0.20729 0.5575 0.080312

7 0.6375 0.082083 0.6625 0.053542 0.255 0.13333 0.0175 0.014375

8 0.9475 0.13365 0.83 0.14479 0.8525 0.21125 0.5525 0.084896

9 0.6725 0.092188 0.63 0.049375 0.23 0.12073 0.0175 0.011979

True and False Positive rates 3PRF-Lasso, N = 100, T = 100, Kf = 5

1 0.94 0.12844 0.8375 0.13594 0.85 0.2226 0.555 0.076354

2 0.935 0.13562 0.865 0.13448 0.8625 0.22812 0.63 0.10385

3 0.69 0.087292 0.725 0.073021 0.235 0.15323 0.0225 0.024375

4 0.925 0.13052 0.825 0.12062 0.845 0.22583 0.5325 0.068646

5 0.7175 0.091354 0.6975 0.067604 0.2225 0.14802 0.0025 0.014896

6 0.95 0.13552 0.8275 0.12771 0.89 0.22073 0.5575 0.074167

7 0.67 0.091146 0.6375 0.050521 0.29 0.13542 0.0225 0.014479

8 0.925 0.12927 0.845 0.13719 0.9025 0.23479 0.5675 0.070104

9 0.65 0.082917 0.6625 0.060729 0.275 0.13396 0.0125 0.0098958

Notes: TPR =

∑N
i=1 I(γ̂

(3PRF )
i ̸= 0 and γi ̸= 0)∑N

i=1 I(γi ̸= 0)
, FPR =

∑N
i=1 I(γ̂

(3PRF )
i ̸= 0 and γi = 0)∑N

i=1 I(γi = 0)
, where I de-

notes the indicator function, and γ̂
(3PRF )
i denotes the ith component of the estimated parameter vector

γ̂(3PRF ), which is estimated in Stage 2 of 3PRF-Lasso procedure.
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Table B12: TPR/FPR in stage-2 of 3PRF-Lasso.

True and False Positive Rates for 3PRF-Lasso, N = 200, T = 100, Kf = 4

π
ψf = 1, ψg = 1 ψf = 1, ψg = 0.7 ψf = 0.7, ψg = 1 ψf = 0.7, ψg = 0.7

TPR FPR TPR FPR TPR FPR TPR FPR

1 0.9325 0.089031 0.7775 0.11265 0.905 0.15934 0.515 0.050714

2 0.9375 0.10689 0.8325 0.10454 0.8975 0.16347 0.5825 0.062755

3 0.71 0.056327 0.735 0.068776 0.3025 0.095816 0.015 0.0044388

4 0.9225 0.081735 0.7675 0.089643 0.86 0.17245 0.56 0.058163

5 0.7175 0.061276 0.7275 0.043112 0.275 0.11719 0.0175 0.011327

6 0.92 0.084796 0.7875 0.08301 0.86 0.18173 0.48 0.057347

7 0.71 0.054541 0.66 0.043929 0.35 0.10985 0.02 0.0063265

8 0.935 0.092143 0.7725 0.1077 0.8675 0.16168 0.505 0.058061

9 0.745 0.060561 0.62 0.039184 0.345 0.11214 0.0275 0.011939

True and False Positive Rates for 3PRF-Lasso, N = 200, T = 100, Kf = 5

1 0.8925 0.083878 0.795 0.10786 0.9 0.17954 0.5 0.054184

2 0.95 0.093418 0.8125 0.10413 0.915 0.17781 0.61 0.082653

3 0.7275 0.061939 0.7 0.042908 0.365 0.099643 0.0175 0.01

4 0.91 0.092959 0.845 0.10388 0.9175 0.15628 0.545 0.07449

5 0.74 0.064184 0.71 0.050765 0.375 0.10235 0.015 0.004949

6 0.925 0.081071 0.7925 0.090102 0.9075 0.16821 0.465 0.046276

7 0.705 0.069031 0.6475 0.044694 0.3925 0.12133 0.0175 0.0086735

8 0.925 0.080459 0.7275 0.081888 0.9225 0.18071 0.5075 0.066071

9 0.71 0.062806 0.71 0.050867 0.365 0.11194 0.03 0.010561

Notes: See Table B11.
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Table B13: TPR/FPR in PCR-Lasso (Regressing y − ŷpcr on idiosyncratic components generated after
extracting PC-factors from X).

True and False Positive rates PCR-Lasso, N = 100, T = 100, Kf = 4

(π)
ψf = 1, ψg = 1 ψf = 1, ψg = 0.7 ψf = 0.7, ψg = 1 ψf = 0.7, ψg = 0.7

TPR FPR TPR FPR TPR FPR TPR FPR

1 0.96 0.13781 0.8775 0.17833 0.915 0.14229 0.9075 0.16073

2 0.97 0.12781 0.8725 0.19115 0.8775 0.15354 0.895 0.16354

3 0.8175 0.11771 0.7125 0.13062 0.6075 0.24583 0.645 0.28094

4 0.975 0.14615 0.915 0.19042 0.9025 0.15875 0.905 0.19573

5 0.7725 0.10135 0.7625 0.11125 0.655 0.29125 0.625 0.26146

6 0.975 0.19656 0.93 0.16646 0.9225 0.16521 0.9325 0.2101

7 0.78 0.10833 0.7475 0.1326 0.69 0.24073 0.6475 0.26531

8 0.97 0.14365 0.8925 0.19625 0.9125 0.19437 0.9025 0.23729

9 0.7925 0.1126 0.7475 0.11802 0.6675 0.2625 0.67 0.27

True and False Positive rates PCR-Lasso, N = 100, T = 100, Kf = 5

1 0.9575 0.14448 0.9125 0.20917 0.835 0.14302 0.88 0.17604

2 0.96 0.14708 0.895 0.20833 0.8575 0.18458 0.92 0.25427

3 0.7775 0.12969 0.795 0.15771 0.6575 0.30167 0.6425 0.30875

4 0.9825 0.20448 0.885 0.19937 0.8575 0.21531 0.8975 0.19687

5 0.82 0.12562 0.7525 0.1575 0.6525 0.31875 0.665 0.295

6 0.965 0.17135 0.9 0.22396 0.865 0.19437 0.915 0.20031

7 0.8125 0.1124 0.745 0.14198 0.6325 0.26865 0.6425 0.30135

8 0.985 0.1724 0.9125 0.24854 0.9025 0.20469 0.91 0.23281

9 0.7925 0.10219 0.7475 0.11573 0.665 0.2425 0.69 0.27469

Notes: TPR =

∑N
i=1 I(γ̂

(PCR)
i ̸= 0 and γi ̸= 0)∑N

i=1 I(γi ̸= 0)
, FPR =

∑N
i=1 I(γ̂

(PCR)
i ̸= 0 and γi = 0)∑N

i=1 I(γi = 0)
, where I de-

notes the indicator function, and γ̂
(PCR)
i denotes the ith component of the estimated parameter vector

γ̂(PCR), which is estimated in Stage 2 of PCR-Lasso.
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Table B14: TPR/FPR in PCR-Lasso (Regressing y − ŷpcr on idiosyncratic components generated after
extracting PC-factors from X).

True and False Positive rates PCR-Lasso, N = 200, T = 100, Kf = 4

(π)
ψf = 1, ψg = 1 ψf = 1, ψg = 0.7 ψf = 0.7, ψg = 1 ψf = 0.7, ψg = 0.7

TPR FPR TPR FPR TPR FPR TPR FPR

1 0.97 0.26026 0.8625 0.31388 0.9675 0.27046 0.8825 0.31969

2 0.9675 0.23133 0.88 0.28827 0.9375 0.25046 0.9175 0.30638

3 0.79 0.12857 0.7625 0.17735 0.6775 0.26648 0.675 0.29128

4 0.9475 0.2374 0.85 0.2799 0.935 0.30592 0.9 0.28092

5 0.7975 0.145 0.7525 0.12796 0.6625 0.27694 0.62 0.26066

6 0.94 0.24133 0.87 0.25929 0.915 0.23464 0.88 0.29352

7 0.7825 0.16286 0.7525 0.12474 0.67 0.24821 0.6475 0.23612

8 0.9725 0.23031 0.8525 0.29311 0.945 0.31179 0.8775 0.30327

9 0.7825 0.10597 0.7275 0.15577 0.7 0.25342 0.6475 0.24337

True and False Positive rates PCR-Lasso, N = 200, T = 100, Kf = 5

1 0.9575 0.30066 0.905 0.33051 0.925 0.32235 0.905 0.36862

2 0.9775 0.31816 0.92 0.37832 0.9125 0.33138 0.9175 0.37158

3 0.7925 0.19582 0.7425 0.16959 0.6325 0.29847 0.65 0.30964

4 0.95 0.31031 0.92 0.345 0.965 0.3702 0.9 0.36658

5 0.815 0.22367 0.725 0.19056 0.6975 0.3049 0.67 0.29638

6 0.9575 0.29653 0.8775 0.33378 0.9425 0.29087 0.925 0.35163

7 0.795 0.19801 0.7375 0.21689 0.7025 0.3576 0.65 0.33383

8 0.96 0.31133 0.88 0.35357 0.9225 0.35337 0.8825 0.34301

9 0.78 0.20082 0.7475 0.20577 0.7 0.29077 0.6625 0.32046

Notes: See Table B13.
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