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Abstract

We extend the Three-Pass Regression Filter (3PRF) in two key dimensions: (1) accommodating
weak factors and, (2) allowing for a correlation between the target variable and the predictors, even
after adjusting for common factors, driven by correlations in the idiosyncratic components of the
covariates and the prediction target. Our theoretical contribution is to establish the consistency of
3PRF under these flexible assumptions, showing that relevant factors can be consistently estimated
even when they are weak, albeit at slower rates. Stronger relevant factors improve 3PRF convergence
to the infeasible best forecast, while weaker relevant factors dampen it. Conversely, stronger irrelevant
factors hinder the rate of convergence, whereas weaker irrelevant factors enhance it. We compare
3PRF with Principal Component Regression (PCR), highlighting scenarios where 3PRF performs
better. Methodologically, we extend 3PRF by integrating a LASSO step to develop the 3PRF
LASSO estimator, which effectively captures the target’s dependency on the predictors’ idiosyncratic
components. We derive the rate at which the average prediction error from this step converges to
zero, accounting for generated regressor effects. Simulation results confirm that 3PRF performs
well under these broad assumptions, with the LASSO step delivering a substantial gain. In an
empirical application using the FRED-QD dataset, 3SPRF LASSO delivers reliable forecasts of key
macroeconomic variables across multiple horizons.

Keywords: Weak Factors, Forecasting, high dimension, supervision, three pass regression filter,
LASSO.
JEL Classification: C18, C22, C53, C55, E27

1 Introduction

Factor models are ubiquitous in the econometric analysis of high-dimensional data. Starting from the
seminal work of Forni et al. [2000], Stock & Watson [2002], and Bai [2003], the utility of these models
has been increasingly acknowledged in high-dimensional multivariate analysis. Notably, they have found
extensive use in two key areas: high-dimensional covariance estimation and forecasting. This paper

delves into the latter domain.

*Department of Economics, University of California, Riverside, CA 92521. E-mail: dpadh002@ucr.edu
fDepartment of Economics, University of California, Riverside, CA 92521. E-mail: tae.lee@ucr.edu



The literature on forecasting with factor models is extensive. Some prominent papers include Lud-
vigson & Ng [2016], who highlight their effectiveness in financial forecasting; Stock & Watson [2002] and
Stock & Watson [2003], who demonstrate their importance in macroeconomic prediction, among others.
The efficacy of these models is well-documented in the literature. Stock & Watson [2012] find that
forecasts derived from factor models outperform those generated by several shrinkage-based techniques.
Kim & Swanson [2018] corroborate these findings by demonstrating superior predictive performance of
factor-augmented models compared to a wide array of machine learning methods.

The framework for forecasting with factor models is well-established. Consider a scenario where we
have a large number of predictors organized in a vector, x;, and we aim to forecast a single target variable
h-periods ahead, y;45. In this context, a standard factor-based forecasting model can be expressed as

follows:

Yern = Bo + B'Fy + wppn, (1.1)

wt:(f)0+‘§Ft+Et. (12)

The N-dimensional vector of covariates x; is decomposed into three latent components: an intercept term
¢y, a low-rank component ®F;, and a vector of idiosyncratic components ;. The low-rank component
captures the systematic variation across the covariates and is driven by the K-dimensional vector of latent
factor(s) F';, where K remains fixed asymptotically. The N x K matrix ® represents the temporally
invariant matrix of factor loadings. These loadings quantify the influence of factors on the observed
covariates. The vector of idiosyncratic components &;, as the name suggests, represents variation unique
to individual covariates, which is non-systematic and cannot be further decomposed into a lower-rank
structure.

Since these factors are latent, they must be estimated using an appropriate method. The benchmark
approach in the literature is the method of principal components, an unsupervised technique that derives
factors exclusively from the predictor matrix X. This method does not incorporate information about the
target variable y during factor estimation, which limits its predictive utility. To address this limitation,
Kelly & Pruitt [2015] introduced the Three-Pass Regression Filter (3PRF), a supervised framework that
leverages additional information from ‘proxy’ variables, denoted as Z. These proxies, either pre-specified
or constructed based on y, enable the estimation of factor(s) relevant to y, which often constitute a strict
subset of the factors driving X. By aligning factor estimation with the goal of forecasting the target
variable, 3PRF improves forecasting efficiency compared to unsupervised methods.

In formulating their theoretical framework, Kelly & Pruitt [2015] rely on foundational assumptions
inspired by earlier works such as Stock & Watson [2002] and Bai & Ng [2006]. These assumptions

facilitate the identification of latent factor(s) and provide the basis for deriving the properties of their



estimator. In this study, we revisit these assumptions and relax two critical ones, leveraging recent
advancements in literature. Below, we outline these assumptions and discuss the rationale for their
relaxation.

The first assumption pertains to the proportion of variation in the predictors that is explained by
the factor(s), a concept commonly referred to as the “strength” of the factor(s). Like most earlier
studies in the literature, Kelly & Pruitt [2015] assume that all factors driving the predictors are strong.
Specifically, with reference to Equation 1.2, this assumption is formalized as @Tq’ converging to a non-zero
limit, indicating that the factors explain a substantial share of the variance in the predictors. However,
evidence from studies such as Bailey et al. [2021] and Freyaldenhoven [2022] indicates that this strong

PP
s NV

factor(s) assumption often fails in practice. Factors may instead be weak, i.e. for some ¢ < 1, may
converge to a non-zero limit. Bailey et al. [2021] provide a framework for estimating factor strength and
apply their method to key macroeconomic and financial datasets, demonstrating that the strong factor
assumption is frequently violated. Weakness in factor(s) can primarily be attributed to two reasons, or
a combination thereof: (i) when factor(s) influence only a subset of predictors, commonly referred to as
local factors (see Freyaldenhoven [2022]), or (ii) when idiosyncratic variances are large (see Bai & Ng
[2023] and references therein). In such scenarios, the theoretical properties of factor-based forecasting
methods warrant closer examination.

Recent studies on the principal components method for factor estimation have sought to relax the
strong factor assumption; see Bai & Ng [2023] and Freyaldenhoven [2022]. These papers primarily
examine the implications of a weak factor structure on estimating the factor(s) using the principal
components method. In contrast, our focus is on evaluating the effect of weak factor(s) on forecasting.
We extend the theory of 3PRF to accommodate settings where predictors follow a weak factor structure.
We allow target-relevant factors to have a different strength compared to target-irrelevant factors. Our
theoretical results provide bounds on how weak the target-relevant factors can be. When developing the
asymptotic theory under the assumption of a strong factor structure, it is sufficient for the sample size
(T') and the number of predictors (V) to approach infinity, with no restriction on their relative growth
rates. However, in the weak factor setting, the derivation of the theoretical properties of 3PRF reveals
that T" must grow at a sufficiently fast rate to ensure consistency, a requirement absent under the strong
factor assumption. This condition is formalized in Assumption 6 of the paper. Furthermore, we show
that if irrelevant factors are too strong relative to relevant factors, the convergence rate of 3PRF is
severely reduced, and beyond a specific limit, we encounter inconsistency.

We establish that 3PRF converges to the infeasible best forecast at a faster rate than Principal
Component Regression (PCR) when the relevant factor(s) are stronger than the irrelevant ones. This

finding provides a rationale for 3PRF’s strong performance in many empirical settings, as this assumption

is likely to hold for a wide range of economic target variables. Conversely, when all irrelevant factor(s) are



stronger than the relevant ones, 3PRF converges to the infeasible best forecast at a slower rate compared
to PCR. In cases where some irrelevant factor(s) are weaker and others stronger than the relevant ones,
this comparison is complicated.

While Kelly & Pruitt [2015] demonstrate the consistency and establish convergence rates of 3PRF,
they do not theoretically establish any superiority over PCR. Our contribution fills this gap by explicitly
identifying cases where 3PRF has a clear advantage in terms of faster convergence rates.

The second assumption in Kelly & Pruitt [2015], which we address in this paper, pertains to the
orthogonality of the idiosyncratic components to the target variable. In Equation 1.1, the forecast
Bo + B'Fy is optimal only if E(usyp, | €/) = 0, as assumed by Kelly & Pruitt [2015]. However, in high-
dimensional settings, it is unlikely that all idiosyncratic components (g; | i € {1, ..., N}) are uncorrelated
with the target variable. If even a small number of these components are correlated with the target, the
forecast constructed using Equation 1.1 becomes suboptimal, as it fails to fully exploit the predictive
information contained in X.

Allowing idiosyncratic components to correlate with the target variable reflects the reality of many
economic forecasting scenarios, particularly when dealing with a large number of predictors. Fan et al.
[2023b] provide several examples demonstrating this. Beyhum & Striaukas [2024] introduce a framework
for testing a dense model specification, specifically factor regression, against a hybrid model that combines
dense and sparse components; a factor model augmented with sparse idiosyncratic components. They
apply this test to various macroeconomic and financial datasets, frequently rejecting the null hypothesis.
They note, “This suggests the presence of sparsity — alongside a dense component — in widely studied
economic applications.” To further motivate this, consider the empirical application in Kelly & Pruitt
[2015], wherein they examine the forecastability of key macroeconomic aggregates using a comprehensive
set of predictors - specifically, 108 macroeconomic variables compiled by Stock & Watson [2012]. The
predictors are assumed to follow an approximate factor structure, as introduced by Chamberlain &
Rothschild [1983], accommodating weak cross-sectional and temporal dependence in the idiosyncratic
components. Although Kelly & Pruitt [2015] do not explicitly assert that the chosen target variables
are fundamentally different from other predictors, their methodology implicitly relies on the assumption
that the idiosyncratic components of the target variables are martingale difference sequences and are
uncorrelated with the idiosyncratic components of other predictors.! This implies a strict factor structure
for the target variables rather than an approximate one, which is restrictive.

Few studies in the literature have sought to address this limitation, namely, the assumption that
idiosyncratic components are orthogonal to the target variable—by leveraging the predictive content
of these components. Notable examples include Kneip & Sarda [2011], Fan et al. [2020] and Fan et al.

[2023b]. These works augment the principal components-based factor forecasting model by incorporating

!They assume that y, | — E(y,,|F¢) is serially uncorrelated and independent of all idiosyncratic components.



a small subset of idiosyncratic elements relevant to the target as additional predictors. This is accom-
plished using regularized M -estimation methods, which capture residual dependencies between the target
and predictors that are not explained by common factors and are thus attributed to the idiosyncratic
components of the predictors. In doing so, these studies aim to bridge two distinct methodologies for
high-dimensional estimation: sparse modeling and dense, factor-based modeling.

Motivated by this line of work, our paper extends the 3PRF framework by introducing an additional
step to incorporate the predictive content of idiosyncratic components. Specifically, we employ the Least
Absolute Shrinkage and Selection Operator (LASSO; Tibshirani [1996]) to select relevant idiosyncratic
components as additional predictors. We refer to this augmented estimator as 3PRF LASSO. Our
empirical analysis demonstrates that idiosyncratic components can exhibit substantial predictive power
for certain macroeconomic variables. This is evidenced by the enhanced performance of the 3PRF LASSO
method compared to the original 3PRF approach, underscoring the value of integrating sparse and dense
components in economic forecasting models.

Augmenting a principal components based factor model to account for ignored idiosyncratic de-
pendence is relatively straightforward, as the unsupervised nature of factor estimation via the principal
components method ensures that the factor estimation process remains unaffected by the data-generating
process of the target y. However, in the 3PRF framework, allowing idiosyncratic elements to possess
predictive content for the target y, and thus for its proxies Z, introduces a form of ‘corruption’ in the
supervision process, as clarified in Section 2.2 The principal components method is unaffected by the
correlation between idiosyncratic components and the target, as neither the target nor its proxies are
used during factor estimation. In contrast, within the 3PRF framework, where proxies are utilized for
supervision, such correlations can potentially undermine the benefits of this supervised approach. The
3PRF methodology is designed to extract relevant factor loadings from the proxies to estimate factors
pertinent to the target. However, when idiosyncratic dependence is present, this extraction process loses
precision, capturing information unrelated to the factors but stemming from the correlation between the
proxies and the idiosyncratic components. To address this issue, we outline assumptions in Section 3
that prevent this ‘corruption’ from adversely impacting the asymptotic convergence rates, ensuring that
3PRF retains its robustness even in the presence of idiosyncratic dependence.

In addition to relaxing these two assumptions within the 3PRF framework, it is noteworthy that,
unlike the literature on PCR, which addresses the challenges posed by weak factors and idiosyncratic
dependence independently without considering their combined impact, we extend the theoretical frame-
work of 3PRF to account for both phenomena simultaneously. Specifically, we derive the asymptotic rate
at which the regularization parameter in the proposed Stage 2 of 3PRF LASSO must approach zero, with

this rate determined by the strength of the factors. Crucially, this rate governs the convergence rate of

2Z mimics the data generating process (DGP) of y in that it depends on the same set of factors and idiosyncratic
components as y. This is clarified in Assumptions 1 and 9.



the LASSO step, as established in the LASSO literature. This analysis provides a deeper understanding
of the interplay between the estimation of weak factors and the handling of idiosyncratic dependence,
and how these interactions influence the overall performance of the model.

Our simulation results indicate that, under these general assumptions, the performance of 3PRF
frequently surpasses that of its closest competitor, PCR. The augmented method, 3PRF LASSO, which
combines 3PRF with a LASSO regression involving the idiosyncratic components, consistently outper-
forms both 3PRF and PCR. In many cases, it also exceeds the performance of PCR augmented with a
LASSO step. When N is large relative to T, this advantage becomes almost universal, extending across
various factor strengths and serial /cross-sectional correlations in factors and idiosyncratic components.
Furthermore, 3PRF LASSO frequently outperforms LASSO when relevant factors are relatively strong
compared to irrelevant factors.

Our empirical application underscores the effectiveness of the 3PRF LASSO approach. We forecast
four key U.S. macroeconomic variables—GDP, Exports, the GDP Deflator, and Housing Starts—using
a comprehensive set of macroeconomic variables from the FRED-QD dataset by Clark & McCracken
[2023]. The 3PRF LASSO method demonstrates competitive performance compared to established
methods, highlighting its reliability in macroeconomic forecasting.

The paper is structured as follows. Section 2 introduces the proposed estimator, detailing its formu-
lation and operational mechanics. In Section 3, we outline a series of assumptions necessary to establish
the theoretical results presented in Section 4. This theoretical framework is then put to the test in Sec-
tion 5, where we explore the numerical properties of our estimator through comprehensive Monte Carlo
simulations. Section 6 focuses on empirical applications, demonstrating the estimator’s performance with

real-world data. Finally, Section 7 summarizes the key findings and offers concluding remarks.

1.1 Definitions and notations

Let y denote the T x 1 vector of the target variable, i.e., ¥ = (yn, Yn+1,-- -, Y7+r). We have N predictors,
each with T observations. The cross-section of predictors at time ¢ is given by the N x 1 vector ;. The
temporal observations of predictor i form the T x 1 vector x;. The predictors are stacked in a T x N
matrix X, X = (x1,@9,...,x7) = (X1,X2,...,Xx). We have L proxies stacked in a T x L matrix
Z = (z1,22,...,27).

Define Jr =11 — %LTL/T, where I is the T' x T identity matrix and 7 is the T' x 1 vector of ones.
J n is defined analogously. For matrices U and V of conformable dimensions, let Wy = JyU'JrV
and Syy =U'JrV.

Given an index set S C {1,..., N} and a vector 2~ with i-th component Z;, define 2; ¢ = 2;1{i €

S}, where 1 is the indicator function. For a set A, |A| denotes its cardinality. For a vector v, v(m)



denotes its m-th component. The norms we use in the paper are:

1/2
ol = fvil, vz = (Zﬁ) » vl = maxfoil.
i i

For an m x n matrix A = [a;;], the following norms are used:

n m
[Allo = 1@2}%2 laizl, Al = lgljagnz; |aij].
j= i=

Stochastic orders are denoted by O, and op,, while deterministic orders are O and o. We say a < b,
if a = O(b) and b = O(a). For matrices, O, and o, denote element-wise stochastic orders. A matrix
A is O,(1) if all elements are O,(1), and o,(1) if all elements are o,(1). The notation O,(a V b)
denotes O,(max(a,b)) and Op(a A b) denotes O,(min(a,b)). max;{A;}icq1,... ny denotes the element-
wise maximum of matrices {A;}icq1,...,n}. The abbreviation ‘w.p.” stands for ‘with probability’ and

‘w.r.t.” stands for with respect to.

2 The Estimator

We predict the target y using a two-stage process which we call 3PRF LASSO. Stage 1 of this process is
the 3PRF procedure by Kelly & Pruitt [2015]. 3PRF is essentially a sequence of linear regressions aimed
at consolidating information from a large set of predictors in a small set of factor(s). The procedure
relies on a set of ‘proxies’ Z, which, as in Kelly & Pruitt [2015], are required to be driven by target-
relevant factor(s) while remaining unaffected by target-irrelevant factor(s). This requirement, explained
in greater detail in the next section, is a crucial element in identifying the target-relevant factor(s). Once
we obtain the target relevant factor(s) from Stage 1, we regress each predictor x; on them and estimate
the residual(s). Thereafter, we perform a LASSO regression to extract any predictive content in these

residuals for our target y. Detailed procedure is outlined below.



Algorithm 1 : 3PRF LASSO Procedure

Stage 1 (Three Pass regression Filter, 3PRF)

Pass Description

1. Run time series regression of x; on Z fori=1,..., N,
Tit = 450’1- + c]);zt + ¥, retain slope estimate &)Z
2. Run cross-section regression of x; on a% fort=1,...,T,
Tig = ¢~>07t + &);Ft + €, retain slope estimate Ft.
3. Run time series regression of y;y, on predictive factors Ft,
Ytth = BO + B/Ft + Ugyn, delivers initial forecast giypn 5 = BO + F;B

Retain the residual 45 and the Stage 1 forecast gyp, f.

Stage 2 (Three-Pass Regression Filter augmented with LASSO, 3PRF LASSO)

Pass  Description

4. Run time series regression of x; on Ffori= 1,...,N,
Tiy = éo,i + (}bil:"t + &4, retain the residual £
5. Run LASSO regression of 445 obtained from Pass 3 in Stage 1

on the estimated residuals £;;,

~ Al A ~
Utrh, =Y €t + Ne4h-

The final forecast is given by

~ 3 PR Al A
6. Jien = Bo+ BF+4'&

From Stage 1 and Stage 2, the final forecast is obtained in Pass 6. We can rewrite the final forecast as

4=y +JrFB+ &5,
—_—

Yy Y.

where the Stage 1 forecast is given by

g, =g+ JIJrFpB

- ~1
=+ JrXWxz (WxzSxxWxz) WhzSxy.
The estimated factor(s) are given by

F' =85, (Wy,Sxz) Wi, X',



and the estimated coefficient(s) of the factor(s) are given by
B=S87:WxzSxz (W/XZSXXWXZ)71 W' z8xy.
Alternatively, we can rewrite the Stage 1 forecast as
yr=w+JrXa,
where & is the implied predictive coefficient for X and is given by
&=Wxy (Wi, SxxWhy,) Wi ,Sx,.

The procedure described above relies on the availability of suitable proxies, which can be obtained
through relationships established in economic theory or constructed using the target variable in a sequen-
tial manner. Proxies constructed using y are referred to as automatic proxies (auto-proxies for short).
Kelly & Pruitt [2015] explains how such auto-proxies can always be constructed. The process to obtain
L proxies is laid out below. Theorem 7 of Kelly & Pruitt [2015] proves that such proxies are valid; in

the sense that they adhere to the assumptions of the model outlined in Section 3.

Algorithm 2: Auto-Proxy Algorithm

0. [Initialize rg =y. For k =1,...,L (where L is the total number of proxies):

1. Define the k' automatic proxy to be r4_;. Stop if k = L; otherwise proceed.

2.  Compute 3PRF for target y using cross-section X and statistical proxies 1 through k.
Denote the resulting forecast .

3.  Calculate r, = y — ¥;,, advance k, and go to step 1.

To understand the functioning of this three-pass procedure, it is instructive to look at the data-

generating process for the proxies.

Z =12y + FA + el +w. (2.1)

Kelly & Pruitt [2015] provide a detailed explanation of how the supervision process operates. Pass
1 of 3PRF constitutes the supervision step, where the relevant factor loadings across predictors are
estimated, up to a rotation, while those associated with irrelevant factors are filtered out. Kelly & Pruitt
[2015] mention that “Fluctuations in the latent factors cause the cross-section of predictors to fan out and
compress over time. First-pass coeflicient estimates map the cross-sectional distribution of predictors to

the latent factors.” This statement holds true only if the composite error term e¢’ + w is uncorrelated



with the idiosyncratic components of the predictors. This is trivially true in the framework of Kelly
& Pruitt [2015], since they assume ¢ = 0 and w is uncorrelated with e. When ¢ # 0, we encounter
what we refer to as the ‘corrupted’ supervisor problem; the supervisor is imperfect in the sense that
it cannot estimate some of the loadings, upto a rotation, consistently in Pass 1 of 3PRF. To illustrate
this, consider a simplified case with only one factor. It can be easily verified that when ¢ = 0 and w
is uncorrelated with €, then, through Pass 1 of Stage 1, we obtain (z)l =c¢;, + Op(T’l/z), where ¢ is a
constant not dependent on i. This implies that Pass 1 of 3PRF, in this setting, can estimate all loadings
up to a constant of proportionality. However, this convenient feature is lost when ¢ # 0, since in that
case, for all j such that (; # 0, we would have (}5j =co;+d; + Op(T’l/Q). This d; term is Op(1) and
arises from the correlation between {e;|¢; # 0} in the data generating process of Z and predictor(s)
in the set A; = {x;|e; is correlated with &;}. Through a set of assumptions, we restrict the extent of
this corruption. Once Pass 1 is ensured to function adequately, that is, the extent of ‘corruption’ is
negligible asymptotically, Kelly & Pruitt [2015] explain that “second-pass cross-sectional regressions use
the estimated mapping in Pass 1 to back out estimates of the factors at each point in time.”, enabling
consistent estimation in Stage 1 of 3PRF. Stage 2 simply proceeds by using consistent estimates of the

factors in Stage 1.

Remark 1. One practical issue is choosing the number of factors when we are using the Auto-Prozry
algorithm. Kelly & Pruitt [2015] adopt a method initially presented by Kramer € Sugiyama [2011] to
calculate the number of factors. We, do mot delve into the question of estimating the number of factors
in this paper. One may use an information criteria as mentioned or divide the data into a training and
validation set and estimate the number of relevant factors using a cross validation technique. Using a
single 3PRF factor is a prudent choice as highlighted in Appendiz 7.2 of Kelly & Pruitt [2015]. They
demonstrate that there are situations where the original data generating process (DGP) of y, which
inwvolves multiple relevant factors, can be reformulated as a DGP with a single relevant factor. Moreover,
in cases where a single-factor representation is not feasible, the variation in the target explained by
the first estimated factor typically far exceeds that explained by the factors estimated subsequently, as
demonstrated in Appendiz 7.3 of Kelly € Pruitt [2015]. This is due to the fact that 3PRF estimates
a rotation of underlying factors, with the first estimated factor explaining the mazximal variation of the

target.

3 Setup

Below, we delineate our data generating process and the associated assumptions.
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Assumption 1. (Data generating Process). The data is generated as follows:

T =g+ PF; + &y, Yirn = Bo+ B'Fi + et + Mg, ze =X+ AF + (ey + wy,

X =17¢,+ FP' +¢, y=1trpo+ FB+evy+n, Z =1y + FA +e¢' +w,

where Fy = (f;,gg)l,ﬁ = (®f,®,), A = (Af,Ay), and B = (ﬂ’f,O')/ with ’,Bf| > 0. Ky >0 is the
dimension of vector f,, Ky, > 0 is the dimension of vector g,, L > 0 is the dimension of vector z;, and

K = Ky + K,. Furthermore, for all j € {i|y; # 0}, B(m) = 0 implies ¢;(m) = 0.

Assumption 1 characterizes the factor structure of the predictors and the data-generating process
for both the target and proxies. The target is driven by a subset of factors that drive variation in
the predictors. In addition, we allow the target to be correlated with the idiosyncratic components, a
modification from Kelly & Pruitt [2015]. In the usual framework, factor(s) act as a convenient conduit
relating X to y. This involves an implicit assumption that X has no explanatory power for the target
after accounting for the latent factors, which may be unrealistic in various settings. The proxies are
driven by factor(s) and idiosyncratic components.

The idea of allowing the predictors to retain explanatory power for the target after accounting for
latent factors has been explored in other studies as well. Examples include Kneip & Sarda [2011],
Kapetanios & Marcellino [2010], and Fan et al. [2023a]. The latter two papers assume a DGP for the

target, which takes the following form,

y=1trfy + FB" + X~y +n

=ur (B + &) + F (B" +¢'v") +ev" +m.

Comparing it with the DGP of y given in Assumption 1, one can clearly see that, v = 4* and B(m) =
B*(m) + >, ¢;(m)y; = 0. We assume that 8" (m) + >, ¢;(m)y; = 0 only if 3"(m) = 0 and for
all j € {ilv; # 0} we have ¢,;(m) = 0. We are ruling out the pathological cases where both these
aforementioned quantities are not zero but the sum B*(m) + >, ¢;(m)y; = 0. This assumption is
succinctly expressed by stating that for all j € {i|v; # 0}, B(m) = 0 implies ¢;(m) = 0. This assumption
allows us to consistently recover the true idiosyncratic components for the relevant x; (i.e., {x;|v; # 0})

in Stage 2 Pass 4 and subsequently implement Pass 5 in Stage 2.

Assumption 2. (Factors, Loadings and Residuals). Let M < oo. For any i,s,t, 0 < ¢y < 1 and

0 <y <1,

F'JrF
1L E|F " <M1 F, Ti> p and T'/? (TT - AF> =0,(1).
—00

- ®,/Jn®
2. B ||¢||4 < M. Forv = fag7 N_wv Z;vzl ¢Uj i> ¢U < 00, NwU/Q (vNU _ P'U) —
' N—o0 Nvv
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. i P BNT. )
and for s = min (Y ,,), N¥/2 (waNg —’Pfg) =0,(1).

3. E(ey) = 0,E |leg||® < M.

W Jrw

4 E(wy) = 0,E |lw||* < M, T2 w, = 0,(1) and T'/? < - Aw> = 0,(1).

5. Bt Mevn) = EMetn | ye, Fry ye—1, Fioq,...) = 0,E (nt2+h) = 6, < 00, and Neyp, is independent of

¢i(m) and €, for any h > 0.

The vector p is non-stochastic. The vectors ¢, for v = f, g are non-stochastic. The matrix Ar,
the matrices P, for v = f, g, and Py, are non-stochastic and are further characterized in Assumption 4.
Similarly, the matrix A, is non-stochastic.

If 9y = 9y = 1 in Assumption 2.2, this corresponds to the strong factor assumption. Combined
with Assumptions 2.1, 2.3, and 2.5, it characterizes the typical structure of forecasting models based on
strong factors. These assumptions are standard in the literature; see Stock & Watson [2002] and Bai &
Ng [2006] in the context of PCR and Kelly & Pruitt [2015] in the context of 3PRF.

We allow for weak factors in the 3PRF framework by relaxing the strong factor assumption, con-
sidering a broader range of factor strengths with 0 < ¢y < 1 and 0 < ¢4 < 1, where ¢y and 1, may
differ. Similar approaches have been explored in the context of factor estimation using the principal
components method, as in Freyaldenhoven [2022] and Bai & Ng [2023].

Assumption 2.4 is similar to the assumption in Kelly & Pruitt [2015] which ensures that the proxy
noise is well-behaved. The fact that conditional expectation of 7.y, with respect to information set in
time ¢ is zero implies that S +,8’f S+~ e: provides the optimal forecast of the target at time ¢. However,

this forecast is infeasible as the factors and idiosyncratic components are not known.
Assumption 3. (Dependence). For M < oo and any i,j,t,8,mi,mg and v = f,g
1. Let B(gitejs) = Oijtss [0ijes| < Tijy |0ijies| < Tes, and
1N - 1T
(a) Nt Zz‘,j:l Oij < M; (b) Tt Zt,S:l Tis < M}

(c) N=' 325 o loiies| < M, (d) T3, ol < M,

(¢) NTITE 32, 5 s loijes| < M.

4
2. (a) E ‘N_WT_W Yoy Yo [eiscir — Uz‘i,st]‘ <M,
4
_ _ T N
(b) E ‘N 1212 25:1 Zi:l [EiSEjs - Jij,ss] <M.
—,/2p—1/2 T N 2 3
3. E ‘N SETTE Y 1 i Piv(m) [Eireje — %ytt}‘ <M.

2
4 B|TV2 L By (ma)wn (m2)| < M.

31f weakness in loadings is induced by sparsity, i.e., the factor(s) are local, then we can use Assumption 3.2 to prove
3.3 by slightly modifying the argument in Kelly & Pruitt [2015] Lemma 1.1 and Lemma 1.2. However, we consider a more
general setting where factors(s) may not be local; instead, all loadings are weak, and hence we introduce this assumption.
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2

5 B|T-V2 wi(m)en| <M.

2

6. E|T-Y2 I Fy(m)ey| <M.

2

7. E[N"#/25 N ¢, (mi)ey| <M.

Assumption 3.1-3.2 allow weak cross-sectional and temporal dependence in the idiosyncratic com-
ponents; this set of assumptions characterize an approximate factor model (Chamberlain & Rothschild
[1983]). Essentially, we require that the idiosyncratic components lack an underlying factor structure, as
the presence of such a structure would render the true factor space unidentifiable. Assumptions 3.1-3.4
with ¢y = ¢4 = 1 are common in literature, see Bai [2003], Stock & Watson [2002], Kelly & Pruitt [2015]
among others. Bai & Ng [2023] extends Bai [2003] to accommodate weak factors by making similar
adjustments to the assumptions as we have done above.

Assumptions 3.4-3.7 are reasonable since they involve products of orthogonal series. We can specify
lower-level conditions (several mixing conditions) which guarantee 3.1-3.7, but for the sake of simplicity,
we instead state these high-level assumptions, as done in other papers, see Kelly & Pruitt [2015] and Bai

[2003] among others.

Assumption 4. (Uncorrelated loadings and Factors). For matrices Pf, Pyq and Ap, featuring in

Assumption 2, we require the following,

1. Py is positive definite and Py, = 0.

_ | Ar A} .
2. Ap = is positive definite and Ajyy = 0.
Apg A

g

We require that the relevant factors be uncorrelated with the irrelevant factors and that the associated
relevant factor loadings also be uncorrelated with the irrelevant factor loadings. This condition is less
stringent than the assumption in Kelly & Pruitt [2015], where all loadings are assumed to be orthogonal

to each other, and all factors are also assumed to be mutually orthogonal.?
Assumption 5. (Relevant Prozies).

1. A= [ A; O ]

2. Ay is non-singular.

Assumption 5 is borrowed from Kelly & Pruitt [2015]. We require proxies to mimic the target in
terms of their dependence on factors. The assumption asserts that proxies must meet three criteria:
(i) they should not load on irrelevant factors, (ii) their loadings on relevant factors should be linearly

independent, and (iii) their number should match the number of relevant factors. When combined with

4See Assumption 5 (Normalization) in Kelly & Pruitt [2015].
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Assumption 4, this implies that the common components of proxies span the relevant factor space and

that none of the variation in proxies stems from irrelevant factors.
Assumption 6. For v = f,g, define I'y, r = min(v' N¥»,\/T) and v = min(vV' N, VT). We need
the following:

. Nl—dzf Nl—a/;f N1/2—1/1f
1. th—>OO,T—>OO WNT = max ( T T2 =0.

. N¥g—vf N¥s—%g " _Yg
= s =
2. impy 00, T—o00 Ty 7 max ( T , N 2 0.

Assumption 6 specifies the necessary growth rate of T relative to N under a weak factor structure.
It is automatically satisfied when 1y = 1), = 1. When all factors have same strength, ¥y = 94 = 9,
Assumption 6.1 implies that a small ¢ necessitates a larger T relative to IV for consistent estimation. This
requirement embodies an implicit cost imposed by a weak factor structure. When 9y > 14, Assumption
6.2 is automatically satisfied. Conversely, when ¢y < 14, Assumption 6.2 reflects the cost of having
higher noise (irrelevant factors) relative to the signal (relevant factors). Additionally, Assumption 6.2
imposes a limit on the weakness of relevant factors relative to irrelevant factors for the consistency of

3PRF, requiring that ¢, > %
Assumption 7. (Uniform bounds). For allm, N and T, v = f, g and some positive constants ry,...,rs,
1. max; ¢;(m) = O,(1).

2. max; €] = Op((log N)™) 4+ Op((log T)™).

1
.
VN

1
3. max; Zth —=¢it| = Op((log N)™) and max; Zivzl = O0p((logT)™).

4. max; ithzl Fy (m)eit| = Op((log N)™).

5. max; |[N~¥s/27-1/2 > ip (M) €jecin

= Op((log N)™).

6. max; |[N~V/27~1/2 > €itgjt| = Op((log N)™).

We impose some high-level assumptions. We require uniform bounds on certain empirical processes
to ensure that the prediction error in the Stage 1 does not adversely affect the theoretical results in
Stage 2 LASSO regression. Such assumptions are prevalent in the literature. Specifically, Assumption
7.1 featured in Fan et al. [2020] and Giglio et al. [2023] and references therein. In fact, Fan et al. [2020]
assumes that the maxima of factors, loadings, and idiosyncratic terms do not scale with N and T and
are uniformly bounded by some constant.” Similarly, Giglio et al. [2023] incorporates Assumption 7.2
with 71 = 1/2. The partial sums (after centering) in Assumptions 7.4-7.6 (without taking the maximum

over 1) are bounded by Assumptions 3.2, 3.3, and 3.6. We assume that the maximum of these empirical

5See Assumption 4.6 regarding Wnax in Fan et al. [2020].
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processes scales as some power of the logarithm of N. This assumption is equivalent to imposing a

uniform tail bound on these partial sums (see Remark 2).

Remark 2. The scaling properties outlined in Assumption 7 are often associated with Weibull distri-
butions, which are widely employed in economics. Their flexibility and ability to capture various shapes
of distributions make them a general and versatile assumption in economic analyses. A more general
assumption could be to impose moment bounds on the random variables and scaled partial sums in As-
sumption 7. For a random variable X;, where i € {1,..., N}, if E(XF) < M for some finite k, then by

Markov Inequality we have
E(X})
< _

P(X; > Nk
( ) (Nl/k)k

M
< —.
- N

Hence, max; P(X; > Nl/k) < % < M ; the highest ordered statistic of X scales with the rate at most
N/, Therefore, we can instead state Assumption 7 by assuming the existence of a sufficiently large k

that allows the theoretical properties of Stage 2 involving LASSO as stated in Theorem 5 to hold.

Assumption 8. (Weak cross sectional dependence). For each i, let A; o = {j ‘ E ‘T‘1/2 Zle EitEjt

2
<M<oo}.
Then N — |A; .| < Ms < 0.

Assumption 8 strengthens Assumption 3 by imposing a truncated form of cross-sectional dependence.
Such a truncation in temporal dependence is commonly assumed in the literature; for instance, see
Gongalves et al. [2017]. A non-zero ¢ introduces ‘corruption’ in the supervisor, which necessitates

assuming weaker dependence in the idiosyncratic terms to enable consistent estimation.
Assumption 9. (‘Relevant’ idiosyncratic terms and mimicking prozies).

1. Let S = {i|y; # 0}. The cardinality of set S is bounded, i.e., |S| < M < oo

2. v; = 0 if and only if ¢} = 0, where ¢, denotes the i'" row of matriz ¢'.

We require the set of ‘relevant’ idiosyncratic terms to be finite. If this set were allowed to grow in
size, we would need to adjust the rates in various ensuing Theorems. The dependence of the target
(and thereby proxies) on idiosyncratic terms leads to noisier estimation in Stage 1 of the 3PRF LASSO
Procedure. If many idiosyncratic terms have explanatory power for y, the extent of corruption in the
Stage 1 Pass 1 (supervising step) is greater. The assumption that ~; = 0 if and only if ¢} = 0 can be
relaxed. We only require that |{i|¢; # 0}| < 0o to establish our theoretical results. However, since Z is

used as a proxy for y, it is reasonable to assume that their data-generating processes are similar.

Remark 3. The dependence of the target on idiosyncratic terms can be ‘dense’ in the sense that a lot
of idiosyncratic terms have non-zero small coefficients, see He [2024]. In such cases, as shown in his
paper, ridge regression is asymptotically efficient in capturing both factor and idiosyncratic information

among the entire class of spectral reqularized estimators. Our model, unlike his paper, assumes that the
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dependence of the target on idiosyncratic terms is sparse, more akin to the setting in Fan et al. [2020]

and Kneip € Sarda [2011].

Assumption 10. (Stage 2 LASSO Regression). The following assumptions are necessary to establish the
convergence result in Theorem 5 for the Stage 2 LASSO regression, which involves generated regressors.

Forry,...,r5 as defined in Assumption 7, we require:
(log N)"
1. (a)re{ry,...r5}, ———— = 0O(1).
(0) 7 € {ra...ma), S5 = 0()
) Y (og M) + (log TY:] = O(1)
0 "+ (logT)™) = .
(b) T [(log gT) (

2. There exists a large enough constant k > 0 s.t. Vi € {1,...,N}, and VT, we have,

T
(sl ) ¢ oy (=),
VT K

3. Define Ac 4 := (E + JTg(P;)/ (E + JTg@/g) /T. For the N x N matriz A. 4, we say that, w.r.t.
A. 4, the compatibility condition is met for some set A C {1,...,N}, if for some compatibility

constant v > 0, and for all N x 1 vectors © satisfying ||@ac|l; < 3(|®a4l,, it holds that
1©4]7 < (©'A.,©) |A|/v".

We assume that, w.p. approaching one, the compatibility condition is met for set S defined in

Assumption 9, w.r.t. A 4 and the associated compatibility constant is vg.

Assumption 10.1 is required to bound the impact of estimation errors in Stage 1 on Stage 2, as
generated regressors are used in Stage 2. Assumption 10.2 is naturally satisfied for i.i.d. sub-Gaussian
processes, which are commonly employed in deriving the properties of LASSO, as seen in Biihlmann &
Van De Geer [2011]. Although the current setup does not assume i.i.d., we assume a weak dependence
structure that obeys a similar sub-Gaussian-type bound on partial sums. Assumption 10.3, the com-
patibility condition, is standard in the LASSO literature (see Bithlmann & Van De Geer [2011]). This
assumption essentially restricts the correlation among the relevant idiosyncratic components, ensuring

they are not excessively interdependent.

4 Theoretical Results

We present each of the Theorems 1-4 in two parts, labeled as parts (a) and (b). The first part (a)

accommodates the idea of weak factor(s), while the second part (b) focuses on cases where idiosyncratic
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terms have predictive content for the target. We, therefore, cater to diverse readerships; certain readers
may find one part more interesting than the other, while some may be interested in both.

Asymptotic results throughout the paper are based on simultaneous N and T limits, as in Bai [2003]
and Kelly & Pruitt [2015]. As explained in Bai [2003], a simultaneous limit implies the existence of
coinciding sequential and path-wise limits, but not vice-versa. Proofs for all the Theorems are provided
in Appendix A.

Define =} = max (T*I/z, N—¥s/2, %;:’) = max (Tﬁl/z, N—¥s/2 N=¥s+¥9/2 &\/;Uf), where
the equality follows from substituting the value of I'y, 7 as defined in Assumption 6.

N5
Theorem 1. (a) Let Assumptions 1-6 hold and v =0 and { = 0. Additionally, if = 0(1), then

VT

we have,

Gt — Eeyesn = Op(Enir),

where Byyyn, denotes the conditional expectation of the target variable at t + h given the information set

at t.

N1=¥s T
(b) Let Assumptions 1-6 and 8-9 hold, v # 0 and ¢ # 0. Furthermore, T =0(1) and N 0(1),
then

Gtrh.f — E@ern|Ft) = Op(Enr)-

Theorem 1 (a) specifies the rate of convergence of the Stage 1 forecast when v = 0 and ¢ = 0 but
0 <y <1andO0 <1, <1, hence generalizing Kelly & Pruitt [2015] by accommodating weak factor(s).
When 9 =14, =1, the rate is 51}’171 (6n7 = min(vV'N,VT)).

Theorem 1 (b) establishes that the Stage 1 forecast converges to the conditional expectation of the
target w.r.t. true relevant factors. Unlike Theorem 1 (a), this factor-based forecast is no longer optimal
because « is allowed to take a value different from 0, indicating that the idiosyncratic components
contain predictive information for the target. This predictive content in idiosyncratic components is
harnessed in subsequent Stage 2. Theorem 1 (b) generalizes Kelly & Pruitt [2015] along 2 dimensions,
i.e., accommodating weak factors and abstracting away from the assumption that y;4, — E(yryr|F) has

a conditional expectation of zero with respect to information set in period t.

Remark 4. If factor(s) are strong, Theorem 1(a) would imply that G — Eeyern = Op(Syr). This is
different from the result in Kelly & Pruitt [2015] where the rate is O,(T~'/?), (see Theorem 4 in their
paper). Their proof follows two steps. First they show that Giyp — Geen = Op(Tfl/Q) and then they arque
that \/T@]Hh T,ﬁoo Eiyetn. Since Gitn is Op(1), \/T@Hh would diverge to infinity and their statement
would be false. If they erroneously wrote this and instead wanted to imply that VT (Joyn — Eeean) . —

N —00

0, then, again this statement is false because Yi4p, — Eryrrn has random elements which converge to 0 at

a rate which is O,(N~Y2) + 0,(T~Y/?) = Op((SX/lT)-
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Theorem 2. Let &; denote the it element of é&. If Assumptions 1-6 hold, v = 0 and ¢ = 0. If
Py =lk,, then for any i,

“ P 15 v/
N¢faim—m>(¢if—wa o) By

—

Theorem 2 establishes consistency of the implied predictive coefficient & in a scenario with possibly
weak factors. This generalizes Theorem 2 of Kelly & Pruitt [2015], where this result is stated for
1y =1y = 1. As argued in Kelly & Pruitt [2015] , as N grows, the predictive information in f is spread
across a larger number of predictors so each predictor’s contribution approaches zero at the rate of %
That is the case when the number of predictors which load on the factors is proportionate to NN, i.e.,
strong factor(s). When the factor(s) are weak, they may either be local or have weak (local to zero)
loadings or an amalgam thereof. If the factor(s) are not pervasive, the predictive information contained
within the vector f is dispersed across a few variables. The standardization term N¥/ illustrates that
the predictive information is distributed across a subset of predictors; where the size of this subset is
proportional to N¥s. Hence, the contribution of each predictor goes to 0 at a slower rate compared to
pervasive factors. When the factor(s) are pervasive but loadings are weak, in the sense that ¢;5 = cnqgi s
where qgif is a constant (not dependent on N), then Assumption 2.2, would imply that ¢, = O(N¥s~1),
which would imply that N&; ﬁ (QNSZ F— 5 f>/ By. Consequently, when factors are pervasive but all
loadings are weak (local to zero), the predictive information in f is distributed across all predictors, and

1
the relative contribution of each predictor diminishes at a rate of N similar to the scenario with strong

factor(s).

Define G = B, B, (AfAfPr AP AN, (AfAfPrAS), where B, = T~ Z'J1Z and
By=N"UT2Z' I XINX'JrZ.
N1-vs
Theorem 3. (a) Let Assumptions 1-6 hold and v =0 and ¢ = 0. Additionally, if —=— = O(1), then

VT

we have,
B —GsB; = Op(Exr)-
N1=%sf

(b) Let Assumptions 1-6 and 8-9 hold, v # 0 and ¢ # 0. Furthermore, Wi

=0(1) and — = O(1),
then,

B —GsB; = O0,(Exr).

Theorem 3 (a) specifies the convergence rate of the vector of predictive coefficient(s) of the factor(s),
ie., ,3 to a rotated version of the true coefficient vector 3. This generalizes Theorem 5 of Kelly & Pruitt
[2015] by accommodating weak factor(s). Just like Theorem 1 (a), when ¢y = 1, = 1, the rate is 5]:,}T,
which is dissimilar to the v/T rate specified in Kelly & Pruitt [2015]. This difference stems from the
definition of rotation matrix G, see Remark 5. Theorem 3 (b) extends the scope of Theorem 3 (a) by

allowing a more general DGP where idiosyncratic elements possess predictive capabilities for the target.
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Define H = F4F ) AjA Py and Ho = FoFy, [N“WT1Z' Jr X Ty, where, Fy = T2 J 1 Z
and Fp = N~ T2Z'Jr XInX'JrZ.

Theorem 4. (a) Let Assumptions 1-6 hold and v = 0 and ¢ = 0. Additionally, if N\l/_;f =0(1), we
have,

Fy— (Ho+H;f,) = O,(Exr)-
(b) Let Assumptions 1-6 and 8-9 hold, v # 0 and ¢ # 0. Furthermore, N\};’f =0(1) and % =0(1),
we have,

Fy— (Ho+Hf,) = Oy(Enh).

Similar to the aforementioned Theorems, both Theorem 4 (a) and Theorem 4 (b) extend the findings
of Theorem 6 in Kelly & Pruitt [2015] by accommodating weak factor(s) and permitting idiosyncratic
terms to have predictive information for the target variable respectively.

Theorem 4 (a) and 4 (b) establish the convergence of the estimated factor(s) to a rotation of the
true relevant factor(s) and provide the corresponding rate. Our convergence result diverges from the
one presented in Kelly & Pruitt [2015]. They demonstrate the convergence of F, to a vector HF,
(H # Hy) at a V/N rate. However, the matrix H, as defined in their paper, does not satisfy certain

desirable properties, which we highlight in Remark 5.

Remark 5. As highlighted in Bai & Ng [2006] and also emphasized in Kelly € Pruitt [2015], the
presence of matrices Hy¢ and Gg in Theorem 3 and Theorem 4 stems from our estimation of a vector
space. These Theorems “pertain to the difference between {Ft/ﬁ} and the space spanned by [Ft/3]”.
The product H’ng equals an identity matriz, thereby nullifying the rotations in the predictive coefficients
and relevant factors and preserving the direction spanned by B'F,. However, this characteristic is absent
in Theorems 5 and 6 of Kelly & Pruitt [2015]. The matrices H and Gg as defined in their paper do not

necessarily yield a product that equals an identity matriz.

Theorem 5. Let the regularization parameter in the Stage 2 Pass 5 regression be given by A\ =
ve+ klog N
ENT
least 1 — (exp [—£] + o(1)), we have,

2 , ¢ >0 and k is defined in Assumption 10. Then, if Assumptions 1-10 hold, w.p. at

—_
—
—

1. Viog N
7 lev—evl =0, :

Corollary 5.1. From Theorem 5 and Theorem 1 (b), it follows that

1. log N
Flo-BuiF.e)l, =0, (ZET ).

SNT
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Theorem 5 establishes the rate at which the average prediction error of the Stage 2 LASSO regression

Vlog N

=NT
convergence rate for a high-dimensional M estimator, as indicated in Bickel et al. [2009]. This slower

log N

converges to 0. The rate , in general, is different from +—, which represents the optimal

convergence rate is induced by the complexities associated with the generated regressor problem. To
mitigate the maximum estimation error (across ¢) when generating the idiosyncratic components, it
becomes imperative to adjust the rate at which the regularization parameter asymptotically converges

to zero. This necessitated adjustment leads to a more gradual rate of convergence.

4.1 Discussion and Comparison with Principal Component regression

Given the theorems we have derived, we can now discuss the theoretical advantages that the 3PRF, and
by extension Partial Least Squares (PLS), which is equivalent to auto-proxy 3PRF, offers over PCR.
If N¥f = O(T), an advantage arises when relevant factors are stronger than irrelevant factors, i.e.,
P > 1y

To see this, consider a PCR model that uses the first K principal components, where K is equal to
the number of factors, as regressors. From the discussion in Section 2.2 of Bai & Ng [2006], leading up

to their Theorem 3, one can deduce the following;:

. ~PCR 1\ PC -1 (€
yEFC}LR—Etth = (:6 -Bf'H 1) F, +8H ' (Ft _HFt>’ (4.1)

where g)ﬁ_C,;R is the predicted value of the target at time ¢ + h, formed using predictors available at time ¢
via PCR; Ey;45 denotes the conditional expectation of the target variable at ¢+ h given the information
set at t; H is an invertible rotation matrix; and 13‘5 ¢ represents the estimated factors obtained as the
leading K principal components.

The convergence of PCR prediction to E;y:4p depends on two main components: the convergence
of BPCR to a rotated version of the true coeflicient vector 3, and the convergence of Ff ¢ to a rotated
version of the true factors F;. Adapting the results of Lemma 4 from Bai & Ng [2023] to the case of
heterogeneous factor strengths, if v/7T' /NY¥s = o(1), the first term in Equation 4.1 converges to zero at a
rate of v/T. For the second term, the convergence rate depends on the elements of 1:"5 “_ HF; and the
structure of 3'H .

Even if 3 contains zero elements (for irrelevant factors), the rotation matrix H generally results in
B H ! having nonzero elements. Although the components of 8’ H ! corresponding to zero entries in 3
may converge to zero under specific settings, this convergence occurs more slowly than the convergence
of the estimated factors to a rotated version of the true factors. To illustrate, consider a case with two

factors, Fy; and Fy;, where only the first factor is relevant to the target variable (i.e., 3 = (81,0)'). If H

6The condition N¥ = O(T) is assumed to show the impact of factor convergence rates; we avoid allowing 7' to determine
the rates, as this would trivially render both regressions with an equivalent rate.
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were the identity matrix, the convergence of the second term in (4.1) would depend on how fast F{;C,

the first estimated factor, converges to Fi;.

It has been established that, under certain conditions—more restrictive than those considered in this
paper— the rotation matrix H converges to the identity matrix.” However, this convergence occurs at
a slower rate compared to the rate at which the estimated factors converge to the rotated versions of
the true factors (see Lemma 3 in Freyaldenhoven [2022]). Consequently, the convergence of the second
term in Equation (4.1) is determined by the rate at which the elements of the vector 1:"5 ¢ converge
to a rotated version of F; and this rate is determined by the slowest converging element within 1:";) C.
In our simplified two-factor setting, if the irrelevant factor is weaker, then from Proposition 7 of Bai
& Ng [2023], we have 1:"50 — HF; = O,(N~%3/2), and hence the convergence rate of PCR, which is
determined by the two terms in Equation 4.1, and would be equal to min(N¥s/2 T/?) = N¥s/2 as
NY¥s = o(N¥) = O(T).

One may, however, wonder what if we included only the leading Ky principal components as regressors
instead of all. Intuitively, this might seem advantageous, as the factors estimated using the leading K
principal components of X are expected to converge to the strongest Ky factors. These strongest factors
correspond to the relevant factors when 1y > 1)4. Thus, it might seem that using only the first Ky
principal components could result in faster convergence of PCR. However, this is not the case. The
estimated factors obtained via the principal component method using the first K¢ principal components
converge to a rotated version of the true factors, not the true factors themselves. Consequently, unless
the rotation matrix converges to the identity matrix, the leading Ky principal components will provide
a noisy estimate of the relevant factors. Furthermore, the convergence of the rotation matrix to the
identity matrix occurs at a slow rate, limiting the potential benefits of using only the leading Ky principal
components in PCR.

To make things clear, once again, consider a case with two factors: one relevant and one irrelevant,
and let 15 > 1)4. Then, according to Bai & Ng [2023], the PC estimate of the leading factor, i.e., Fﬁc,
converges to hF; where h = [hq, hy]. For Fu to serve as a reliable predictor, we need hs to converge to zero;
otherwise, Fﬁc would represent a linear combination of relevant and irrelevant factors, not the relevant
factor alone, leading to the inconsistency of PCR (which uses only the leading principal component).
Under Assumption 1 of Freyaldenhoven [2022], which is more restrictive than the assumptions in our

paper, along with additional assumptions that are comparable to those we impose, we can apply Theorem

7See Assumptions 1(b) and 1(c) in Freyaldenhoven [2022], which are substantially more restrictive than Assumption
4 imposed in our paper regarding the covariance structure of factors. Our assumptions are placed on the population
covariance matrices, whereas Freyaldenhoven [2022] requires certain assumptions to hold for sample covariance matrices.
Additionally, Freyaldenhoven [2022] imposes the restrictive condition that ®’® (without any normalization) is diagonal,
which is a much stronger requirement. Despite these more restrictive assumptions, we compare our results to their setting
and demonstrate better properties.
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2 of Freyaldenhoven [2022] to deduce:
FEC —F, =0, (wa> + O, (N%*wf) + 0, (N'72¥5).
This follows since, one can derive the following using Lemma 3 of Freyaldenhoven [2022]:
h—1[1,0] =0, (N‘tf> +0, (Nr),

and FEC —hF1; = Op(1—2¢7)+0,(—1/2). Therefore, if we use the leading principal component in this
simplified two-factor case (with a strong relevant factor and a weak irrelevant factor), our convergence
rate cannot exceed N¥#/4, which is much slower than N¥#/2. Hence, when comparing PCR and 3PRF in
a case with strong relevant factors, we restrict our attention to cases where PCR includes all estimated
factors rather than just the leading principal components corresponding to the first K factor(s).
3PRF performs sub-optimally when irrelevant factors are stronger than relevant factors. In such cases,
as can be inferred from Proposition 7 of Bai & Ng [2023], PCR’s convergence rate to the infeasible best
forecast will be min(N¥# 2.V %), whereas for 3PRF it is strictly slower, as can be seen in Theorem 1.
However, this scenario is improbable, as the predictors are typically driven by multiple irrelevant factors,
with at least some of these factors being probably weaker than the relevant factors. This is discussed
further in Remark 6. Figure 1 illustrates the performance of 3PRF and PCR when all relevant factors
have the same strength, all irrelevant factors have the same strength, and N < T. D at (1,1) represents
the case where both relevant and irrelevant factors are strong, as described in Kelly & Pruitt [2015]. The
figure highlights three distinct regions. In Region A (Green), relevant factors are relatively stronger,
determining the convergence rates, and 3PRF converges faster than PCR. Along the line 9y = 1,4, the
convergence rates of PCR and 3PRF are identical. In Region B (Yellow), weak factor strength slows
convergence rates, but consistency is preserved, and PCR outperforms 3PRF. Finally, in Region C

(Red), 3PRF becomes inconsistent.

Remark 6. Introducing weaker irrelevant factors alongside stronger ones does not alter the theoretical
properties of 3PRF; the strength of the strongest irrelevant factor determines its convergence rate. In
contrast, the theoretical properties of PCR are affected by variations in the strength of irrelevant factors.
PCR requires the inclusion of all estimated factors as regressors, as omitting even a subset introduces
issues due to rotational indeterminacy. This indeterminacy arises because PCR estimates factors as
linear combinations of the true underlying factors, making it difficult to distinguish relevant factors from
irrelevant ones at a sufficiently fast rate. As a result, the leading principal components (equal to the
number of factors driving X ) must be included as regressors in PCR.

If weaker estimated factors are excluded, the noise in the rotation matriz can prevent PCR from con-
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Figure 1: Convergence rate based on Factor strength. (Drawn for the case when N =< T)).

verging at a fast enough rate. Including all PC estimated factors resolves this issue but results in slower
convergence compared to 3PRF, as the weakest irrelevant factor then determines the rate of convergence
in PCR. Therefore, while 3PRF’s convergence rate is robust to variations in the strengths across irrele-
vant factors—being determined by the strongest irrelevant factor—PCR’s performance deteriorates when
there are weaker irrelevant factors, as all such factors must be estimated and included in the predictive
regression. When irrelevant factors vary in strength, with some being stronger and others weaker than
the relevant factors, the comparison between 3PRF and PCR becomes less clear; One must evaluate the
trade-off between excluding weaker estimated factors, which can lead to issues arising from rotational
indeterminacy, and including them, which may introduce problems due to their estimates being very

noisy.

5 Simulation Analysis

To evaluate the performance of our estimator in finite samples, we undertake Monte Carlo experiments.
The data is generated based on Assumption 1. We explore scenarios where Ky = 1 and K, = k, with k
taking values of either 4 or 5. The relevant and irrelevant factors are generated as follows: we begin by
drawing the first observation from the N(0,1) distribution, and then draw subsequent observations as
fi = prfio1 +ups and §, = pg&i—1+ ugs with ug, ~TIN(0,1) and u,y; ~ IIN(0,%,), us; and u,; are

uncorrelated and X is an identity matrix of order k. We divide each factor by its standard deviation to
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obtain f and g. The parameters p; and p, dictate the serial correlation among factors, and they take
values of 0, 0.3, or 0.9 in our setup, similar to Kelly & Pruitt [2015]. The idiosyncratic elements are
generated as, €;,; = ag;4—1 + it Eip = (1 + d2) Vit + dvi_14+ + dviy1 . where v;; is standard normal.
The parameter a controls their serial correlation and takes values 0, 0.3 and 0.9 whereas d, which governs
the strength of cross-sectional correlation takes values of 0 or 1. For each predictor x;, the loading on
the relevant factor is independently drawn from a standard normal distribution and scaled by N—(—%7),
Similarly, for each predictor, the loadings on the irrelevant factors are drawn independently from a
multivariate normal distribution with zero mean and an identity covariance matrix, where the dimension
of the covariance matrix is either 4 or 5. These loadings are then scaled by N~(1=%s)_ Here, 1) ¢ represents
the strength of the relevant factor, while 1, denotes the strength of all irrelevant factors. 1y and 1,
take the values 0.7 or 1. For the set {i|y; # 0}, we make ¢,;, = 0, in line with Assumption 1. The target
variable is generated as y;11 = fi + ay'e; + ney1, where mp41 ~ IIN(0,1), and v = (0,1,1,1,1,05_5)".
We set @« = 0.3 when d = 1 and o = 0.375 when d = 0, ensuring that the explained variation by the
factors and idiosyncratic elements remains within a narrow band. For our simulations, we use the target
y as the auto-proxy.

We compare the out-of-sample performance of five methods: PCR (as described in Stock & Watson
[2002]), 3PRF by Kelly & Pruitt [2015], LASSO by Tibshirani [1996], PCR LASSO, and 3PRF LASSO
(our method). The PCR LASSO method is a two-stage procedure: initially, a regression of the target is
performed on the leading principal components (similar to Stock & Watson [2002]), followed by regressing
the residual from the initial regression on the idiosyncratic components. This process resembles our
method, with the key distinction being that the factors and idiosyncratic components are estimated
using an unsupervised technique, i.e., the principal components method. The hyper-parameter tuning
for the LASSO regressions in our simulations is performed using 10-fold cross-validation, following the
approach in Fan et al. [2020]. The column labeled ‘Oracle’ displays the average in-sample R-square value
(across repeated samples) derived from the infeasible regression of y on f and the ‘relevant’ idiosyncratic
elements, i.e., {€;|7; # 0}. The following five columns report the average (across repeated samples) out-
of-sample R-square values for the 5 aforementioned methods. We consider 100 repeated samples. To
compute the out-of-sample R-squared values, we partition the sample into two halves: a training window
and a testing window, each comprising 100 observations. We use a fixed estimation window as described
in West & McCracken [1998].

The simulation results in Tables 1-4 show that, for a given strength of irrelevant factors, the perfor-
mance of all methods improves as the strength of the relevant factors increases. Conversely, all methods,
perform poorly when the strength of irrelevant factors increases for a fixed strength of relevant factors.
This outcome is anticipated, as higher factor strength enhances the signal-to-noise ratio in all predictors,

positively impacting these methods. However, when the strength of the relevant factor diminishes rela-

24



tive to irrelevant factors, the 3PRF and 3PRF LASSO methods perform the poorest. This result aligns
with theoretical expectations, as the 3PRF, being a supervised method, is inherently more sensitive to
the variance in predictors attributable to relevant factors compared to alternative approaches. In con-
trast, when the strength of relevant factors increases relative to irrelevant factors—the 3PRF and 3PRF
LASSO methods exhibit the best performance.

When comparing PCR and 3PRF, we observe that 3PRF outperforms PCR in most cases, except
when the irrelevant factors are stronger than the relevant ones. Therefore, even when the idiosyncratic
terms possess predictive power for the target variable, 3PRF demonstrates strong performance. This
indicates that the ‘corruption’ in the 3PRF procedure, as discussed in Section 2, has a minimal effect
on its efficacy, and the advantages conferred by its supervised nature persist when compared to PCR.
Consequently, the 3PRF procedure is robust to minor perturbations in the DGP of the auto-proxy.

The simulation results reveal that, in most cases, 3PRF and PCR are outperformed by either LASSO,
3PRF LASSO, or PCR LASSO. This outcome is expected, as 3PRF and PCR do not leverage the
predictive power of idiosyncratic elements. When comparing 3PRF LASSO and PCR LASSO, we find
that 3PRF LASSO outperforms PCR LASSO in the majority of cases. Even when 3PRF LASSO does not
outperform PCR LASSO, its performance closely trails that of PCR LASSO. Conversely, when 3PRF
LASSO outperforms PCR LASSO, the margin of superiority is often substantial. This suggests that
augmenting the factor-based prediction model with an additional LASSO step is more effective when
factors are estimated using 3PRF rather than the principal component method. This superiority arises
from the supervised nature of 3PRF, which leads to better estimation of the relevant factors in Stage
1 of 3PRF LASSO relative to PCR. This improvement in Stage 1 percolates over to Stage 2, where
we deal with generated regressors. Additionally, we observe that the false positive rates in Stage 2 of
PCR LASSO are substantially higher than those in 3PRF LASSO, while the true positive rates remain
comparable, as shown in Online Appendix Tables B11-B14. The potential reasons for this are discussed
in Section B2 of the Online Appendix, where we also provide an additional experiment to corroborate
these findings.

The performance differential between 3PRF LASSO and PCR LASSO is more pronounced when
K, = 5 compared to the case where K, = 4, as evident from Tables 1 and 5.8 Furthermore, when the
training sample size T' = 100 is half of the cross-sectional size N = 200, 3PRF LASSO exhibits much
better performance than PCR LASSO, as shown by comparing Tables 1 and 6.

When comparing LASSO and 3PRF LASSO, we observe that 3SPRF LASSO outperforms LASSO

when the relevant factors are relatively stronger than the irrelevant ones. Conversely, LASSO demon-

8The results reported in this paper examine the effect of increasing irrelevant factors with 7' = 100, N = 100, and
g = 9y = 1. Additional simulations in the Online Appendix confirm that these findings are consistent across different
sample sizes and factor strengths.

9This finding is robust beyond the limited comparison provided in Tables 1 and 6. Variations in the number of irrelevant
factors and factor strengths have little effect on this conclusion.
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strates superior performance when the relevant factors are weaker than the irrelevant factors. This result
aligns with intuition: stronger relevant factors improve the convergence rate of the Stage 1 estimates in
3PRF LASSO, which in turn enhances the accuracy of Stage 2 in 3PRF LASSO. However, when the
relevant factors are relatively weaker, the convergence rate of 3PRF is significantly impaired, leading
to suboptimal performance in Stage 2. The benefits of explicitly modeling the factor structure become
evident when the factors are strong, as this enhances the effectiveness of Stage 1 in 3PRF LASSO. The
improved estimation in Stage 1 carries over to Stage 2, leading 3PRF LASSO to outperform LASSO.
However, in cases where the factor structure is weak, estimation errors in Stage 1 can offset these ad-
vantages, reducing the overall effectiveness of 3PRF LASSO relative to LASSO.

Overall, 3PRF LASSO demonstrates robust performance, often outperforming its competitors, partic-
ularly when the relevant factors are relatively stronger than the irrelevant ones. Even when the strengths
of relevant and irrelevant factors are similar—whether all factors are strong or all are weak—3PRF
LASSO performs comparably to, and frequently better than, alternative methods. However, when the
irrelevant factors are relatively stronger than the relevant ones, the performance of SPRF LASSO declines
and falls short of some of its competitors.

The tables in this paper present a subset of the simulation results discussed in Section 5. Additional
simulation results, evaluating the effect of sample sizes across varying numbers of factors and factor
strength combinations, are provided in the Online Appendix. True and false positive rates and the
simulation results for an additional example to corroborate some of our findings are also reported in

Online Appendix.

6 Empirical Application

In our empirical analysis, we assess the forecastability of four key U.S. macroeconomic aggregates:
Gross Domestic Product, Exports, the GDP Deflator, and Housing Starts. The first two variables
are production-related, while the GDP Deflator reflects price movements. Housing Starts is included
due to its role in previous empirical work by Fan et al. [2023a], which found that combining factor and
sparse regression methods outperformed both PCR and LASSO in predicting Housing Starts in Northeast
United States. For our study, we analyze overall Housing Starts across the United States.

These variables, along with their predictors, are obtained from the FRED-QD dataset, published by
Clark & McCracken [2023]. The target variables—Gross Domestic Product, Exports, the GDP Deflator,
and Housing Starts—correspond respectively to the dataset codes ‘GDPC1’, ‘EXPGSC1’, ‘GDPCTPT,
and ‘HOUST’. Each series is transformed following the method by Hamilton & Xi [2024] to address non-
stationarity, a common challenge in macroeconomic data analysis as noted by Beveridge & Nelson [1981]

and Nelson & Plosser [1982]. All variables are standardized to account for the sensitivity of the 3PRF
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method to differences in scale, similar to the scaling sensitivity in PCR and LASSO. Standardization
ensures that no variable disproportionately influences the results due to its scale.

Prior to forecasting, both target and predictor data undergo partial transformations with respect to
a constant and four lags of the target variable, following the approach by Kelly & Pruitt [2015], Bai &
Ng [2008], Stock & Watson [2012]. This generates the following variables:

Ytth = Yiah — E (yt+h | Yt  Yt—1, Yt—2, Z/t—3) s

&y =x —E (2 | Yo, Ye—1,Ye—2,Yi—3) ,

where E(- | ) denotes linear projection on € and a constant. As a consequence of these transformations,
some observations are lost, leading to a dataset spanning from 1963:Q3 to 2019:Q3. The COVID-19
period is deliberately excluded due to its outlier nature, rendering it unforecastable. Our forecasting
horizon spans one quarter (h = 1) to one year (h = 4).

The determination of the number of factors in PCR is based on the eigenvalue ratio method introduced
by Ahn & Horenstein [2013], yielding one factor for all training samples. This aligns with the findings
of Kelly & Pruitt [2015], who also observed one factor using the information criteria by Bai & Ng [2002]
in their dataset. Since the number of target-relevant factors is equal to or fewer than those that drive
the set of predictors, we use one factor for our 3PRF forecasts. Also, as argued in Remark 1, choosing a
single factor may be a prudent choice under many circumstances.

We employ a recursive window approach to construct out-of-sample forecasts of the aforementioned
series similar to Kelly & Pruitt [2015] and present OOS R-squared values for different methods. The
initial training sample (which expands recursively) spans the following time periods, 1963:Q3 - 1997:Q3,
encompassing 60 percent of the total observations.

For LASSO regression, whether implemented as a standalone method or as an auxiliary regression
in 3PRF LASSO and PCR LASSO, we use a 10-fold cross-validation technique to estimate parameters
within each training sample, following the methodology outlined in Fan et al. [2020]. The results are
presented in Table 7. We forecast four variables across four horizons, yielding a total of 16 comparisons
(i.e., across four variables and four horizons).

In each of these comparisons, 3PRF LASSO and PCR LASSO consistently outperform the standard
3PRF and PCR methods. Additionally, the standalone LASSO method emerges as the best performer
in only two out of the sixteen instances, and even then, by a narrow margin. This underscores the utility
of combining sparse and dense regression techniques for forecasting macroeconomic variables.

Out of the sixteen combinations, 3PRF LASSO emerges as the best-performing method in nine cases
and the second-best in five, with only two instances where it does not feature among the top two methods.
Furthermore, it closely trails the second-best method in these two instances, underscoring its reliability.

Overall, 3PRF LASSO proves to be a robust forecasting technique for high-dimensional datasets,
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especially where both factor structure and sparsity are likely to be present.

7 Conclusion

Our paper extends the framework developed in Kelly & Pruitt [2015] by addressing two critical aspects
of factor-based forecasting models: accommodating weak factors and leveraging potentially informative
idiosyncratic components by incorporating them as additional regressors (in addition to factors) through
a penalized regression (LASSO). From a theoretical standpoint, our contribution lies in demonstrating
how the weakness of factors impacts the convergence rate of the estimator, leading to slower rates as
relevant factors become less pervasive. Importantly, we establish that when relevant factors are stronger
than irrelevant ones, 3PRF achieves a faster convergence rate to the infeasible best forecast compared
to PCR. This advantage arises because 3PRF can isolate and utilize relevant factors more effectively in
the presence of irrelevant ones.

Allowing idiosyncratic components to have predictive power for the target and, by extension, the
proxies (which have a similar DGP as the target) necessitates expanding the underlying model assump-
tions. We show that, under mild assumptions, this extension does not impose any penalty on convergence
rates. If factors are strong, as in Kelly & Pruitt [2015], the convergence rate of 3PRF within a framework
where idiosyncratic dependence is allowed would be identical to the case where idiosyncratic dependence
is absent, i.e., the setting in the paper by Kelly & Pruitt [2015]. This result underscores the robustness
of 3PRF in adapting to more general DGPs without sacrificing theoretical efficiency.

On the methodological front, we enhance 3PRF by incorporating a Stage 2 LASSO regression to
capture predictive content from idiosyncratic components. This integration allows the model to effec-
tively utilize residual variation that is not explained by common factors. Our empirical analysis, using
macroeconomic data, highlights the practical significance of this extension, demonstrating substantial
improvements in the predictability of key macroeconomic variables when idiosyncratic information is

included.
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Table 1: OOS R-squared across competing methods

Ki=1,K,=4 N =100, T = 100 V=19 =1

pr | pg | a | d| Oracle PCR 3PRF | LASSO | PCR+L | 3PRF+L

0 0 0 | 0] 061963 | 0.35711 | 0.35713 | 0.50183 0.483 0.50297

03109103 0] 061963 | 0.34567 | 0.36254 | 0.48815 | 0.41808 0.4941

03109103 1] 065218 | 0.2887 | 0.38393 | 0.52197 | 0.50523 | 0.53013

03109109 0] 0.62498 | 0.32803 | 0.35824 | 0.49378 | 0.41771 0.49123

03109109 1] 064927 | 0.27884 | 0.37397 | 0.5074 | 0.51562 0.5142

09103103 0] 061978 | 0.36505 | 0.34815 | 0.49502 | 0.38609 | 0.50948

09103031 0.6419 | 0.31822 | 0.39491 | 0.52705 | 0.53859 | 0.52448

0910310910 0.617 | 0.39879 | 0.38352 | 0.52131 0.52027 | 0.53489

09103109 1] 064385 | 0.33854 | 0.41707 | 0.53639 | 0.54622 | 0.54224

Notes: Ky, Ky, pr pg, 6 , d V5, g are defined in Section 5. Oracle denotes the infeasible regression,
as described in Section 5. PCR denotes the regression of y on first ‘K’ principal components, where
K = Ky + K,;. 3PRF denotes the auto-proxy 3PRF with Ky auto-prozies. LASSO denotes the the
LASSO regression of y on X. S8PRF+L is 3PRF LASSO procedure where Stage 1 (3PRF) uses K
prozies. PCR+L is analogously a 2 Stage regression where Stage 1 is PCR involving leading K = K;+ K,
PCs as predictors, and Stage 2 is a LASSO regression involving the idiosyncratic components estimated

using principal component method. The highest R? value across competing methods in in bold.

Table 2: OOS R-squared across competing methods

pf | pg | a | d|l Oracle PCR 3PRF | LASSO | PCR+L | 3PRF+L

0 0 0 | 0| 0.61586 | 0.35254 | 0.3763 | 0.44874 | 0.43334 | 0.45638

03109103 0] 061272 | 0.34334 | 0.37507 | 0.4475 | 0.32952 | 0.46164

03109703 1] 0.64204 | 0.34798 | 0.40109 | 0.51072 | 0.50934 | 0.5275

03109109 0] 061562 | 0.34182 | 0.37569 | 0.43835 | 0.42262 | 0.47136

03109109 | 1] 0.65034 | 0.35345 | 0.41414 | 0.53489 | 0.53643 | 0.55218

09103103 0] 0.61676 | 0.40086 | 0.43177 | 0.5093 0.4897 | 0.52916

09103031 0.6445 | 0.38991 | 0.45023 | 0.54269 | 0.55545 | 0.56651

0910310901 06191 | 0.40294 | 0.42346 | 0.49675 | 0.41185 | 0.49669

091]031]09 | 1] 064742 | 0.38952 | 0.45598 | 0.56103 | 0.56505 | 0.56816

Notes: See Table 1
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Table 3: OOS R-squared across competing methods

Ky=1,K,=4

N =100, T = 100

b= 0.7, 9y =1

Pr | pg a | d || Oracle PCR 3PRF LASSO | PCR+L | 3PRF+L
0 0 0 | 0] 0.61984 | 0.25428 | 0.042604 0.3525 0.3717 | 0.36652
03109030 06142 0.21833 -0.0001 0.3204 | 0.30434 | 0.31485
0309031 06526 |-0.039526 | 0.042867 | 0.25753 | 0.18481 | 0.14079
0310910910/ 060923 | 0.19586 | -0.020731 | 0.31079 | 0.3338 0.30475
0309109 |1 065025 | -0.016048 | 0.050238 | 0.2339 | 0.053706 | 0.14786
09031030 | 062011 | 0.24858 | 0.014442 | 0.35448 | 0.34412 | 0.36225
09031031/ 064539 | 0.012379 | 0.067817 | 0.24279 | 0.17838 | 0.16922
0903109 |0| 06099 | 0.17364 | 0.024531 | 0.34554 | 0.35578 | 0.34891
0903]09 |1/ 065026 | 0.010274 | 0.078063 | 0.25798 | 0.13377 | 0.18915
Notes: See Table 1
Table 4: OOS R-squared across competing methods
Ki=1 K;=4 N =100, T'= 100 Yy =079, =0.7
pr | pg | a | d|l Oracle PCR 3PRF | LASSO | PCR+L | 3PRF+L
0 0 0 | 0] 0.61494 | 0.27246 | 0.31847 | 0.31304 | 0.34248 | 0.35345
031091030 061829 | 0.2715 | 0.32075 | 0.31823 | 0.34769 | 0.36768
03109031/ 064903 | 0.039788 | 0.23694 | 0.2993 | 0.25044 | 0.24138
03109]09|0| 06153 | 0.28658 | 0.3367 | 0.33782 | 0.36746 | 0.37318
03109 1]09 |1/ 065476 | 0.064438 | 0.25242 | 0.28539 | 0.20769 0.2527
09]03]03|0]| 061824 0.321 0.3625 | 0.36587 | 0.35551 | 0.3989
09031031/ 065205 | 0.066997 | 0.23593 | 0.2994 | 0.23966 | 0.23904
09]031]09 |0 | 061817 | 0.27051 | 0.35604 | 0.34206 | 0.32838 | 0.38636
0903]09 | 1| 064375 | 0.051624 | 0.21217 | 0.25925 | 0.18316 | 0.21405

Notes: See Table 1
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Table 5: OOS R-squared across competing methods

Ki=1,K;=5 N =100, T'= 100 vr=19,=1
pr | pg | a | d| Oracle PCR 3PRF LASSO | PCR+L | 3PRF+L
0 0 0 | 0] 0.61952 | 0.35065 | 0.36033 | 0.49697 | 0.45746 | 0.50415
03109 03| 0| 061747 | 0.32665 | 0.35071 | 0.47532 0.3951 | 0.48162
03109 1]03]| 1] 064156 | 0.24943 | 0.35685 | 0.49404 | 0.46676 | 0.48814
031091091 0] 061054 | 0.31013 | 0.33968 | 0.46534 | 0.30602 | 0.46885
03109 ]09]| 1| 064935 | 0.25122 | 0.3529 | 0.50154 | 0.48852 | 0.50764
091]0.31]03]| 0| 061706 | 0.39123 | 0.38815 | 0.52875 | 0.38402 0.5384
091]03]03]| 1] 065268 | 0.31479 | 0.40096 | 0.53045 | 0.54751 | 0.52677
091]0.3]09]| 0| 062003 | 0.39536 | 0.38733 | 0.52423 | 0.40492 | 0.53273
091]03]09]| 1| 064097 | 0.31841 | 0.38816 | 0.52378 | 0.52466 | 0.51459
Notes: See Table 1
Table 6: OOS R-squared across competing methods
K;=1 K;=4 N =200, T'= 100 Yr=1,19y=1

pf | pg | a | d|l Oracle PCR 3PRF | LASSO | PCR+L | 3PRF+L
0 0 0 | 0| 0.62649 | 0.37007 | 0.36536 | 0.49511 0.251 0.5001
031091030 | 061362 | 0.31505 | 0.33425 | 0.44706 | 0.23926 | 0.43754
03109103 1] 0.64683 | 0.29327 | 0.3462 | 0.51792 | 0.3642 0.5174
03109109 |0 | 061788 | 0.32355 | 0.33426 | 0.44939 | 0.25414 | 0.4643
03109109 |1/ 064526 | 0.28446 | 0.34314 | 0.48878 | 0.35585 | 0.50658
0903]03]|0| 061543 | 0.40231 | 0.38629 | 0.51894 | 0.33766 | 0.52398
0903]03]|1]| 0.64284 | 0.3531 | 0.38736 | 0.52788 | 0.39192 | 0.54455
09031090 | 061923 | 0.39344 | 0.37964 | 0.51337 | 0.32802 | 0.52474
0903109 |1/ 064907 | 0.34188 | 0.38216 | 0.53225 | 0.49887 | 0.55153

Notes: See Table 1
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Table 7: Forecasting performance of different models

One Quarter Ahead Forecast, O0OS R%(%)

Target Variable PCR 3PRF | LASSO | PCR-LASSO | 3PRF-LASSO

GDP 3.27 4.56 16.87** 12.79 17.05*
Exports —1.36 —2.24 —1.90 4.96** 6.66"
Housing Starts || —22.83 | —27.61 | 18.60* 14.90** 14.73
GDP Deflator 0.04 0.84 5.58 8.90"* 9.95*

Two Quarters Ahead Forecast, 00S R?(%)

GDP 7.14 9.04 41.99** 42.88* 41.13
Exports 1.13 1.15 19.08 31.97* 24.23**
Housing Starts || —25.08 | —34.74 | 32.29** 15.02 37.65*
GDP Deflator —1.04 2.19 32.52 40.38* 37.75%

Three Quarters Ahead Forecast, OOS R?(%)

GDP 9.85 13.28 | 58.84** 57.03 59.63*
Exports 3.55 3.86 46.23 54.31* 53.23**
Housing Starts || —20.32 | —32.13 | 16.40** 4.22 25.78*
GDP Deflator —5.02 | —0.22 15.48 31.33" 27.24**

One Year Ahead Forecast, 00S R?(%)

GDP 12.20 17.59 69.99* 67.18 68.45**
Exports 6.62 7.36 52.55 57.14** 58.97*
Housing Starts || —10.08 | —14.13 | 16.39** 11.68 19.50*
GDP Deflator —-9.25 | —0.45 20.45 24.42** 27.76*

Notes: The highest two entries have been put in bold. In each row, entry marked with * is the highest

entry and entry marked with ** is the second highest entry.
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Appendix A

This Appendix A is organized as follows. Section Al provides supplementary lemmas that are used
throughout the proofs. Section A2 includes proofs of Theorems 1(a), 2, 3(a), and 4(a), covering stage 1
results of 3PRF-Lasso for the cases when v = 0, and ¢ = 0. The lemmas used in these proofs are also
contained in Section A2. Section A3 addresses Theorems 1(b), 3(b), and 4(b), which focus on stage 1
results of 3PRF-Lasso for v # 0 and ¢ # 0. Section A4 presents the stage 2 results of 3PRF-Lasso, i.e.,
the proof of Theorem 5 and the supporting lemmas for this proof. Additional Simulation results are in
the Online Appendix B. We refer to this as Appendix A and label the sections within it as A1-A4 to
differentiate them from the Online Appendix B, which we refer to as Online Appendix B, with sections

labeled B1-B2.

A1l Supplementary Lemmas

Lemma 1. Under Assumptions 2-3, for all s,t,i,m,mi,mo and v = f, g the following results hold.

2

L E|[(NT) V2L, Fym) [eiseie — ol < M.

2

2. E ‘(NT)*VQ Sy ws(m) [aseir — oiaetl| < M.

3. NP2 ey = 0y(1), N7V, e =0,(1) and T7Y2Y, e = 0,(1).
4. T7Y237 nepn = Op(1).
5. T2 Fi(m)neen = Op(1)  and  T7Y2, wi(m)neen = Op(1).
6. N7V2ET=1250 cumien = Op(1).
7. NTUPT7LN0 L i (ma) €0 Fy (ma) = Op(1).
8. N=W/2T=137 iy (M) eqwr (m2) = Op(1).
9. N~V /2T=12%0 0 diw(m)esnin = Op(1).
10. (a) N~'T-1/2 > s €is€it = Op ((5;]1T) and  (b) N~1/217-1 th eit€jr = Op ((mlT)
11. N~'7=3/2 Zts,t Eis€itNe+h = Op (5;/1T)
12. N7YT=Y25, (Fo(m)eisei = Op (637) -
18. N7IT7V2 3, wi(m)eiseir = Op (637) -
14 N7 Fs(m)iscinern = Op(1).

15, N7y, wa(m)eiseunien = Op(1).
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16. N~¥»/27-1 Zi’t ¢w(m)€it5jt =0y (inviT)'

The stochastic order is understood to hold as N, T — oo, dyr = min(v/N, VT), Ty, 7 = min(VN¥,/T).

Proof: Ttem 1-4, 6 10(a) and 11-15 have been proved in Kelly & Pruitt [2015], Auxiliary Lemma 1. We
prove the rest below.

Item 5: Given Assumption 2.5, we have that

2
E |p-1/2 ZFt m)ern| =T~ ZE ntJr,J E [Ft(m)2]

<7y 6,M
t

=0(1)
by Assumption 2.1 and 2.5. Therefore,

1/22Ft m)ne+n = Op(1),

and similarly,

Zwt m)nen = Op(1)

using Assumption 2.4, 2.5.

Item 7: For v € {f, g} , Using the Cauchy Schwartz inequality,

1/2 2\ 1/2
NPT EN " g (my)es Fi(mo) < - ZFt ma) ) Ty lN_w“/Q D biw (m)eir
it t i
= 0,(1)0,(1)
by Assumptions 3.7 and 2.1.
Ttem 8: v € {f, g}, Using the Cauchy Schwartz inequality,
o\ 1/2

1/2
N2 Z%) my)eswi(ms) < B Zwt ms) > T Z [NWWZ% (m) eir
t %

,t
= 0,(1)0,(1)
by Assumptions 3.7 and 2.4.

Item 9 :Since E [ny417s41] = 0 for ¢ # s and 1,4, is independent of ¢;(m) and €, 4, Vi, ¢ for any h > 0 by
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Assumption 2.5, we have,

2
E|N“V2T 2N g (m)esmirn| = N™T ™Y R [6i(m)e; (m)eus i 4]
it ,5,¢
2
=T E [}, E (N—W? > (bi(m)ait)
t i
= 0p(1)0p(1).

Last line follows from from Assumptions 3.7 and 2.5.

Ttem 10(b):

N71/2T71 Z Eit€jt :N71/2T71 Z [5it5jt — Gij,tt] + N71/2T71 Z Oij,tt

it it it

=0, (T72) +0, (N"1/2)

by Assumption 3.2(b) and 3.1(d).
Item 16 : We have,

N7V RPTEN" i (m)esee =T 2 [ NTVPTTY2N "6 (m) [irgje — 01,0
it it
+ N~w/2 |t Z Giv(M)0ij 1
it
=161+ 16.1L

16.1 is O,(T~1/2) by Assumption 3.3.
16.11 is O,(N~¥+/2) since E |T~! D it Giv(M)aijee| < max E iy (m)| T3, oijel = Op(1) by As-
sumption 2.2 and 3.1(d). Hence, N~¥»/27~1 Yoin Piw(meiree = Op (F&lT)

Lemma 2. Under Assumption(s) 2-3, we have the following
1. T7V2F Jrw = 0,(1).
2. T7YV2F' Jrn = O,(1).

3. T2 Jrn = 0,(1).

4 NUreldy® = 0, (N v N0 %),

/ 1 ngiwf
5. N~ T1® Jye'JrF =0, (T3t sV —— ).
! Cn,7
ngfwf
6. N"VT71®' Jye'Jrw = O, (FNlT Vv )
! In,r
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7. NTUTPE T ye T = Oy (N5 v N ),
8 NIT=32F JredJne'JrF = O, (057)-
9. N'T=320 Jred ne' I F = O, (6y7).

10. NT'T=320' Jred ne' Jrw = Oy, (Sy1) -

11. NTIT=Y2F Jred yey = Oy (657).

12. NT'T71V20' Jred ney = O, ((5&%)

18. N\T=320 Jred ne'JrF = O, (651)-

14. NIT=32q Jred ye' I F = O, (057)-

Proof: Ttem 1-3 and 8-14 have been proved in Kelly & Pruitt [2015], Auxiliary Lemma 2. We prove the
rest below.

Expanding Item 4 we have,

N_wfngN(P = |:N¢f52JN(I)f ngf"/’f (ngE{fJN(I)g):| .

m'™ element of N~%7e}J x®; is given by,

N—¥s/2 (N—¢f/225it¢if(m) - (N—l—i-wf/?ZEit) <N—wf Z¢if(m)>> = N~¥/2(11 + 1.10)

1.I: This term is Op(1) by Assumption 3.7.

P
L.IT: Since N=Y/23" & = O,(1) by Lemma 1.3, we have N+ Yo = 0,(1) as
0 <ty < 1. By Assumption 2.2, N=% 3" ¢, ;(m) = O,(1). Hence, (I+11) is O,(1).

Therefore,

N~ViglJn®; =N"%1/20,(1)

=0, (N7¥112).

Similarly,

N~ Jy®, = O, (N*%ﬂ) ,

which implies

N~ Jn®, = 0, (N%—W x N‘%/Q) .
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Hence, the whole matrix has the following order.
N~YelJy® =0, (N*wf/2 v N*W*%/Q) .
Item 5 can be expanded as

N~ T1®,J ye' 1 F
N=IT= 1 Jye' J 1 F = JeNEST
N=bs+vs (N0 T-1®! J ye' J7 F)

We show that N~¥/T~1®,Jye'JrF is O, (P;VJ{T). By symmetry, N~“sT=18/ Jye'JrF will be

NYa—0y
o, (F]_\,;T) Hence N~¥7+¥s (N—%T_ltl’/gJNs’JTF) is Oy <

) and therefore the whole matrix
In,T

ng_wf

is O, <I‘N110T \ Trr > Therefore, it’s sufficient to show N~%/T~'®,Jye'JrF is O, (F;,J{T) and
g9

the stochastic order for the matrix follows. We show this below.

N—Ys T'®,Jye'JrF is a Ky x K matrix with generic (my,mz) element given by,

A Z bif (m1) Fy (ma) g0 — N~V 1771 Z¢if (mq) Fy (ma2) €54

it 0,75t

— N~ %rp—2 Z F (mo) Dif (my) €t + N—¥s=ip=2 Z Fs (m2) Gif (ma) Ejt

Jys,t ,,8,t

=5I—-51I1 - 5111 4 5.1IV.

5.1is O, (N~%//2) by Lemma 1.7.

5.11is O, (T~%/2) since N=%# ", ¢ (m1) = Op(1) by Assumption 2.2 and
Nt > (T=Y23%, Fy (m2) ;) = Op(1) by Assumption 3.6.

5.1 is O, (N=%/2) since T~ 3" F, (m2) = O,(1) by Assumption 2.1 and
Ty, (N*wf/2 >0, ir (ma) sjt> = Op(1) by Assumption 3.7.

5.1V is O, (T’1/2N’1/2) by Assumptions 2.1, 2.2 and Lemma 1.3.

Summing these terms, N*wa’l(I)'fJNe'JTF is Oy (FN;T)

Item 6 can be expanded as

. N=U T8, J ye' T rw
N_wa_ (i) JNE/JTW =
N~=Vs+vs (N=0aT=1®! Jye' Jrw)

As in the case of Item 5, it suffices to show that N=¥T~1® ;' J ye'Jrw is O, (F]_letT)
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N1 T_1<I>f'JN€'JTw is a Ky x L matrix with generic (m;, m2) element given by,

N-¥s! Z by (my1)wy (ma) gy — N~¥7r7 171 Z Giy (m1) wi (m2) €5

it 4,5t

— N2 Z ws (mg) ¢y (my)eje+ NV 1T72 Z ws (m2) ¢ip (M) et

Jss5t 1,358t

=6.1—-6.II - 6.III 4+ 6.IV.

6.1is O, (N=%7/2) by Lemma 1.8.

6.11 is O, (T~%/2) since N™%7 3", ¢;¢ (m1) = Op(1) by Assumption 2.2 and
N=EY (T2 3 wi (ma) ej¢) = Op(1) by Assumption 3.5.

6.111 is O, (N~¥/27=1/2) since T~Y/2 3w, (m2) = Op(1) by Assumption 2.4
and 715", (N—wf/2 > bif (ma) ejt> = 0, (1) by Assumption 3.7.

6.1V is O, (T_lN_l/Q) by Assumption 2.2, 2.4 and Lemma 1.3.

Summing these terms ,we have that N~%/T~1® ;' Jye'Jrw is O, (FX&T).

Item 7: Similar to arguments presented in the case of Item 5 and 6, to show that N =% T~/2&' J ye' T
s

is O, (N TV N_d’f*‘%), it suffices to show that N~¥/T~Y/2.&;'Jye'Jrn is O, (N%Uf) We show

this below.

m™ element of N~ T~'/2® ¢ Jne'Jrn is given by,

N=UTV2N i p(m)eiman — N~ T2 " i p(m)esmsn

i,t 7,8,t

— NN g p(m)egimen + N7V TN g (m)eiman

4,45t ,J,8,t

=7I1-7I11-"7III47.IV.

7.11s O,(N~%1/2) by Lemma 1.9.

7.I1 can be written as

N/ (Tl > [NW > dis(mei
t 7

)exe)

This is O,(N~%#/2) by Assumption 3.7 and Lemma 1.4.

7.I1I can be written as

<N_wfz¢if(m)> N_l/QT_l/QZEijh (N_1/2)

Jst

= 0,(1)0,(1) (N*W) :

41



This follows from Assumption 2.2 and Lemma 1.6.

7.IV can be written as

) () (v ) (e
Jit s i
= 0,(1)0,(1)0,(1) (N*W X T*W')

_ 0, (N XTI,

This follows from Assumption 2.2 Lemma 1.3 and 1.4.

Summing these terms, N~VsT~1/2& ;' J ye'Jrn is O, (N~Vi/2).

Lemma 3. Under Assumptions 2-3, we have,

—2y Py , _ /21 N2('¢g_¢f)
L N7 1@ Ty Jped y® = O, ( N~¥1/2T3! v :

N¥a/2Tn ¢

3g

. Nz("/’gfwf)
2. N~21T2@ Jye'Jred ye' JpF = O, | T-V/2N-"3"+1531 v ,
T1/2NT—15NT

39y

, N2Wg—vy)
3. N“21T2@ Jye' Jred ye' Jrw = O, | T-V/2N-"5+1671 v . .
T1/2NT—1§NT

N1=¥5\?
4. N_%bfT_SF/JTEJNE/JTEJNE/JTF =0 ( ) .
P\ \VTénr

N1-vs\?
5. N_2wfT_?’F/JTEJNE/JTEJNEIJTLU =0 () .
PAN\VTonr

VTnT

Proof: We prove 1-3 below .4-6 have been proved in Kelly & Pruitt [2015], Online Appendix, Lemma

N1=¢r\?
6. N_waT_3w’JT5JN€’JT5JNe’JTw = Op < > .

Web. They show that N 2T 3F' JreJne'Jredye' JrF, N 2T 3F' Jred ye' JreJ ne' Jrw and
N72T3w' Jred ye' Jred ne' Jrw are all O, (T’lcm%). Therefore changing N2 in the normalization

term by N 2% gives the stochastic orders as listed in Lemma 3 above.

Ttem 1 is K x K matrix given as,

N2, 71§’ ! d, N 2rT7-1@/ ! P
N2 7@ J e Tred y® = rIneJredn®s sIne Jreln®s
N~ 719! Jye'Jredy®; N720T7 '@ Jne'Jre y®,

First, We show that N_waT_li)/fJNs’JTsJN@f is O, (N—wf/%‘;v}T)_
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N‘waT_liJ}JNe’JTsJN{)f has generic (m,mz) element given as

N2t Z bpi (m1) enejudyy (mg) — N—2¥r=171 Z Ggi (ma) €ngjed i (M2)

2,7, i,7,k,t

— NN g (ma) eieridpr (ma) + N2 2T N g (ma) ejiersdp (ma)
igkat idklt

~ NTEUTE ST g (ma) eqsgjedys (m2) + N72ITIT2 N 6 (ma) e e g (me)

it igkst

+ N2 N G (ma) gjesmbpn (m2) = N72T2T720 N g (ma) €556 me0 51 (M2)

.3,k,8,t i.4,k,0,st
=1I —---—1. VIIL.

1.I can be written as

N~ Tty (Z\f‘l/’f/2 > g (ma) 5it> N=YI2N "¢ (ma) £
t i j

J

=0, (N7¥1)

by Assumption 3.7.

1.II can be written as
N-¥s/2 [ N1 Z N~¥s/2p—1 Z bri (m1) encji (wa Z Pk (m2)>
J i,t k
=0, (N*w.f/QF&;T)

by lemma 1.16 and Assumption 2.2.
11T is O, (N_wf/zfj_viT) proof is identical to 1.IL.

1.IV can be written as

v (N_wf Z Ori (m1)> (N_wf Z br1 (m2)> N Z NTYVET Zsﬁg’“
4 l k Jst
=N"120,(1) 0, (1) O, (554

:Op (6&;]\[71/2)

by Assumption 2.2 and Lemma 1.10.

1.Vis O, (N_d’f). Identical to 1.1.
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1.VI can be written as

1

w1

N~ T% (lewa/QZ(j)fi(ml)gis)

% T—1/2N—1/2Z€jt (N—¢fz¢fk(m2)>
Jit k

by Assumption 2.2, 3.7 and Lemma 1.10.

LVILis O, (N~ T3). Identical to 1.VI

1.VIII can be written as
NIt (NW > b (m1)> NTETTIEN "
7 js
% <N1/2T1/2 Z 5kt> (wa Z ¢fl (m2)>
l

kt
:N_IT_lOp (1) Op (1) Op (1)

=0, (N'T7)

by Assumptions 2.2 and Lemma 1.3.

Summing all these terms gives us N_waT_1¢}JN€'JT€JN<I>f is Oy, (N‘wf/2FJ_\,]10T).
By a symmetrical argument N~2¥sT'®| Jye'JreJ n®, is O, (N_%/QI’X,iT).
Nz(wg_"/"f) )

N¥q/2T N,T
It is also easy to see from the proof presented above, that, depending on whether 1) is greater, equal

Hence, N_wa_l‘I’/gJNE:’JTEJN(Pg is O, (

to or less than g, N_waT_lﬁgJNe’JTsJN{)f is either O, (N_wf/QFE}T) (when ¥y > 1g) or
N2®g—vy)
p (M) (when 9y < 1by). When ¢y = 9y, the two rates are equal.
' “U'n,1
NQ("bgfwf) >

; —2¢ =1 ; —pp/21 -
Therefore, the matrix N 2% T~-1®'Jne'JreJ y® is O, <N s/ NNY NU/2Ty 1

Ttem 2 is given by

N2 728, Jye'Tred ye' Jr F
N-2T-2@,' Jye' Jred ye' JrF = FONESTEAE AT
N_waT_Q‘}g/JNé?/JTé?JNé?/JTF

We first show (below) that Ky x K matrix N™20/T 2@, Je'Jrene'JrF is O, (NU1/2I5L ).
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The matrix N~2%T-2®;'J ye'Jred ye' Jr F has generic (mq, ms) element,

N2 2 Z bjr (my) gjucireisFs (M2) — N3 Z Gjr (m1) €jucingitFs (M2)

,7,8 1,7,8,t,u

~ N~ Zs-lp2 Z ¢kf (ml) Ektfjtc?ist (mg) + N—2¥s—1p=3 Z ¢]€f (ml) 5ku5ju5ith (mg)
i,7,k,s,t i,5,k,s,t,u

— NPT N g (i) ejueieisFy (ma) + N720T™4 N " g0 (ma) €jueiucnFs (mo)

1,7,8,t,u 1,7,8,t,u,v

+ N~ 2s—lp=3 Z brf (my) epucjicisFs (mg) — N720r=1tp=4 Z Bry (M1) Ervejucit Fs (Mm2)
i,5,k,s,t,u i,7,k,s,t,u,v

— N72sm1ip2 Z G (ma) gjigicisEs (ma) + N—2s—ip=3 Z Grf (m1) €jucivcicFs (m2)
1,5,k,8,t i,J,k,s,tu

+ NPT N iy () emejigisFs (mo) — N2 2T N gyp (my) eugjuginFs (m2)
i,9,k,l,s,t i,5,k,l,s,t,u

+ N-2¥s—1p=3 Z brs (1) Ejucincis Fs (mg) — N~20r =174 Z Pk (M) €juEincit Fs (M2)
1,5,k,s,tu 1,5,k,8,t,u,0

— N~2s=2p-3 Z b5 (M) epucjreisFs (mo) + N2V =274 Z d1f (M) epvejugitFs (M2)
i,3,k,l,s,t,u i,j,k,l,s,t,u,v

= 2I—---—2XVL

2.1 Using Cauchy Schwartz inequality, this term is bounded by

ol
D=

_ vy _ _ _ _ e
N- =tz | 1Z[N wf/22¢jf (ml)gjt]Q T IZ[N 1p UQZEz'st (m2)5it]2
t J t 1,8
3¢
=N TR0, (557)0,(1)

oM
=0,(T 2N~ "1a57)

by Lemma 1.12 and Assumption 3.7.

2.1T: Using Cauchy Schwartz inequality, this term is bounded by,

)
SIS

_3r _ - — - T
N- =12 [ p 12[]\[ ¢f/22¢jf (m1) €ju)? T 12[2\7 T 1/225it€iu]2
" 5 w it
X (Tl ZFS (m2)> .

3
This is Op(ég,;T_l/QN_Tf'H) by Lemma 1.10(b), Assumption 2.1 and 3.7.
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2.I1I can be written as

LU Ny —apy —1/2p-
N~ V2 (N7 N gy, (ma) [ NTV2T7EY ey,
k

Jit

X <N—1 S TN e F (m2)> :

This is equal to N%’wa’l/QOp((S;,lT)Op(l) which is Op(éﬁ%prl/?N%*wf) by Lemma 1.10(b) and As-
sumption 2.2 and 3.6.

2.1V can be written as

39 p 41
_7£ T—1/2 N—l ZN—’LL'f/QT—l Z¢kf (ml)gkuﬁgju
J k,u

x | N~V2p—1/2 Z Eit (T—l Z F, (m2)> )
1,t s

341
This is Op(I‘K,iTN’ 5 T-1/2) by Lemma 1.3 and 1.16 , Assumption 2.1.

2.V can be written as

_3¥s _ _ -
N 5 +1T 1/2 T 1 ZN ¢f/22¢jf (ml)gju
u j=1

x | 771 Z N1/ Z Fo(ma)eisei
t 1,8

3y
This is Op(é&lTT_l/QN_Tf'H) by Assumption 3.7 and Lemma 1.12.

2.VI can be written as
39
Nfo+1T71/2 T-1 Z N*¢f-/2 Z¢jf (m1)5jv
v j
x | 771 ZN*IT*/2 steit <T1 ZFS (m2)> .
t 1,U s

. —1 A= 112 : ‘
This is O (0N~ 2 HT /2) by Assumption 2.1, 3.7 and Lemma 1.10.

2.VII can be written as
341
N——E—7! <T1 Z N—%s/2 Z Pi,; (ma) sku>
u k
% N71/2T71/2 Zejt (Nl ZTfl/Q ZgisES (m2)> )
J,t % s
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3y p+1

This is O,(N~ "2 T~!) by Assumption 3.6, 3.7 and Lemma 1.3.

2.VIII can be written as

3¢
N <T‘1 SN2 S gy, (o) gkv> NP2,
" k

Ju
X N71/2T71/2287;t <T12Fs (m2)> .
i,t s

v
This is Op(N_STfT_l) by Assumption 3.6 and Lemma 1.3.

2.IX: Using Cauchy Schwartz, this term is bounded by

o\ 1/2
N=brrept? (wa > o, (m1)> TN INTEY e
k t j
1/2
X Tﬁlz NﬁlTi% ZFs(m2)5is<€it R
t 1,8
which is Op(N_wf“'%T_l/Q(SX,;) by Lemma 1.3, Lemma 1.14 and Assumption 2.2.
2.X: Using Cauchy Schwartz, this term is bounded by
o\ 1/2
N—%r+sp—1/2 (Nﬂ}f Z¢kf (m1)> 71 Z N—3 Zgju
k u 7
1/2

_ _ _1
x | 771 E N7~z E Eiukit )
u .t

which is Op(N_wf“'%T_l/zd;,}) by Assumptions 2.1, 2.2, Lemma 1.3 and Lemma 1.10.

2.XI can be written as

N2 (wa >, <m1>> NTUD NI D e
. j k,t
x <N—1 ZT‘”QZ&SFS (m2)> .
7: S

This is Op(N_wf“'%T_l/Q(SX,;) by Assumptions 2.2, 3.6 and Lemma 1.10.
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2.XII can be written as

N (59 S ) (45 | S
l k Jsu

x (N—%T—% Z%> <T‘1ZFS (m2)> :

This is Op(N_wa_l/Q(SX,}f) by Assumption 2.2, 2.3 and Lemma 1.10.

2.XIII Using Cauchy Schwartz, this term is bounded by

N*TP,erl/QTfl/Q (N’lb‘f Z¢kf (m1)> N71/2T71/2 Zgju
k Ju
1/2

1/2
y <N1 Z[Tfl/z Zggt]> <N1 z:[T*”2 > eiFs (mz)]Z) ;

which is Op(N_wf'H/QT_l/Q(SX,}) by Assumption 2.2, 3.6 and Lemma 1.3.

2.XIV can be written as
N—¥stl/2p=1/2 <wa Z Ok, (m1)> N-V2p-1/2 Z&'t
k it
x | N71 Z N-/2p-1 Z €it€iu (Tl Z F, (m2)> .
u 2,t s

This is Op(N_wa_lm(SE%r) by Assumption 2.2, 2.3, Lemma 1.3 and 1.10.

2.XV can be written as

N—Yr—3/2 (wa Z¢lf (m1)> N-Y2p-1/2 Zeku
. k,u
% N71/2T*1/2Z{5jt (Nl ZTﬁl/zzgisFS (m2)> :
gt ‘ )

This is O,(N~%/T73/2) by Assumption 2.2, 3.6 and Lemma 1.3.

2.XVI can be wriiten as

NV (N“’f > (m1)> NP2 ey,
l kv
« | N~V2p-1/2 Z%’u N-1/2p-1/2 Z&t <T1 ZFS (m2)> '
Jsu 7,t s

This is Op(N_wf_%T_?’m) by Assumption 2.1, 2.2, Lemma 1.3.
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Since 0 < 9y < 1, the initial terms dominate the order. Thus, summing all these terms yields:

3y

N~ T 29 Jye' Jredye'JpF = O, <T5N 2f+15N1T> :

By a symmetrical argument, we have:

N7 2@, I ye' Tred ye' JrF = 0, (T-AN" 3 455h ).
Hence, we can conclude that:
Nz(wgfwf)
N2 T2®, Jye' Jre ne' JrF = O, e :
T1/2NT—15NT

Therefore, we have:

3Yg

34 N2(¢g_7/’f)
N_waT_2(I’/JN€/JT€JN€/JTF =0, T_%N_Tf-i_la;f%“ v :
Tl/QNTflisNT

Item 3 is K x M matrix and the proof follows the same logic as Item 2, replacing Fs (ms) by ws (ma).

A2 Proofs of Theorem 1(a), 2, 3(a) and 4(a)

We introduce 2 Lemmas which are utilized in proofs of stage 1 results of SPRF-Lasso for the cases when

~ =0, and ¢ = 0. The proofs are presented subsequent to these Lemmas.

NYg—vs
Lemma 4. Recall, =55, =T Y2V N~¥i/2y <> which is equivalent to
NyT

Pg—P
T=1/2\ N=%5/2\y N—%st¥q/2 \ (‘Ngf> )

VT

N1-¥s

Under Assumptions 1- 6, if ——=— = O(1), if v =0, and ¢ =0, we have,

VT
1. FA=T7"12'J1Z = AjAsA; + A, + O, (T1/2).

2. Fp=N""T2Z'"JrXInX'JrZ = A AfPi AN} + O, (E37)-
3. Fey=N"VT1Z'Jr XInz, = N"VIT ' Z'Ir X Tndo + A AsPrf, + O, (Exh).

Furthermore, the probability limits of & and F, are

& Ly (A;AGN;+AL) T A;AP,

T—o0

and
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By o (AAAs + ) (As AP AN (N T Z T r X T ngo + AsAsPsf,) -

Proof:

First we note that

e NV, Jy®; NV, Iy,
NV, In®; NYo s (N~Vody Tyd,)

=0, (1V N¥s~%r). (A2.1)

The final equality follows from Assumption 2.2 and 4.1.

Item 1 :

Fo=T"'Z'JrZ
=A(T7'F'JrF)AN + A (T7'F'Jrw) + (T W' IrF) AN + T W/ Jrw
—AApA + A, +O, (T—W)
—A AN+ AL+ 0, (T2
The first equality follows from assumptions 2.1, 2.4 and Lemma 2.1 and final equality follows from the

fact that A is block diagonal (Assumption 4) and A = [ A; 0O ] by Assumption 5.

Item 2:

Fp= N WT2Z'JrXInX'IrZ
= AT 'F'JrF)(N""&®JIn®) (T 'F'JrF)N + A (T 'F'JpF) (N @' Jn®) (T'F'Jrw)
+A(T'F'JrF) (N"WT '@ Jne'JpF)N + A (T 'F'JrF) (N T @' Jye' Jpw)
+ AN YT F' Jredy®) (T 'F'JpF)AN + AN YT 'F Jredn®) (T7'F Jrw)
Nj/;f A (NTTRE Tred ve T F) A+ N\l/;f A (NTTRE Tred ve' Trw)

+ (T7'WJrF) (N @' In®) (T'F'IrF) A + (T7'w/ I F) (N &' Iy®) (T7'F' Jrw)

+

+ (T7'w'JpF) (N~ T '@ Ine' IrF) N + (T7'w'JrF) (NVIT'®' I ye' Jrw)

+ (NUT ' Jredy®@) (T F'JrF) A + (N T ' JreJy@) (T F' Jrw)
N1-v%s N

JT vT
=A (T7'F'JrF) (N ®'Jx®) (T7'F'JrF) A + 0, (E37) -

(N*wa*S/ Qw’JTE-:JNs'JTF> A+ (N*lT*?)/ 2w'JT€JN€/JTw)

The final equality follows from Assumption 2.1, 4 , Lemma 2 and equation A2.1.
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Now, using the fact that A = [ A; 0O } (Assumption 5), we have

A(T'F'JrF) (N @' IN®) (T F'JrF)N =Ap (T f'Jrf) (N @, In®y) (T ' Irf) A}
+ A (T fIrf) (N @, In®,) (T g’ Irf) A}
+ A (T f' Trg) (N @ IN®y) (T f Ir f) A

ng —Yy
+

A; (T*W f’JTg) (N0, Ty ®,)
x (T’1/2g’JT f) A

=A;A;Pr AN + O, (Exy) -

The final equality follows from Assumption 2.1, 4.
Hence, FB, which is N~ T 2Z'Jr XJInX'JrZ is equal to AfAfPfAfA} +0, (Ex,lT)

Item 3:

Fo,= N YT 'ZJrXJnx
= A(T'F'JpF) (N Y@ JIne¢o) + A (T 'F'JrF) (N V&' Ty®) F,

+A(T'F'JrF) (N % ® Jye,) + A (N T F Jred néo)

N1-v¥s
+ A (N—wa—lprTsJNi’) F, + WA (N—lT—1/2F'JTsJN€t)

+(T7'w'JrF) (N1 ®' Ingo) + (T7'w' JpF) (N @' Jn®) F,
+(T7'W'JrF) (N1 ®' Jye;) + (N T 'w/' Tred ygo)

17’¢)f
VT
=N"UT'Z'Jp XIn¢o+ A (T 'F'JpF) (N &' TNy®) F, + O, (Eyr) -

+ (N T W Tred y®) Fy + (N*lT*” 2w’JTsJNst)

Assumption 2.1, 4 , Lemma 2 and equation A2.1 give the final equality.

Again using Assumption 5; A = [ A; O ] , we have,

A (T 'F'JpF) (N1 @' Jn®) Fy =Af (T f'Irf) (N @) In®y) f,
+ A (T ' Irf) (N IN®y) g,

+Ap (T f'Irg) (N @, In®y) f,
NYs—vs

vT
=A;AsPrfi+ Oy (Exy) -

Ay (T‘l/Qf'JTg) (NV1®! Ty ®,) g,

The final equality again follows from Assumption 2.1, 4.
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Hence, Foy = N~V T Z' Jp XTI yw, = N~V T Z' Jr XTI ndo + A AfPrf, + 0, (Ex%) -

Combining results for Items 1-3, Using Assumption 6, we have,

P =T'Z'J0Z (NVT2Z' Jr XINX'JrZ) N7 Z' Jr X Ty,

Lo (AfAGAG +AL) (AfAfPrAGAY) T (N T 2/ Ir X Tndo + ArAfPLf,).
Similarly expanding Z'JrX gives Z'Jr X = AfAfQ} + Op(Tfl/Q) and hence,

Ny — —
& = (2'Jr2)" 72X o (AfAGAS AL "AFA;P.

Lemma 5. Under Assumptions 1- 6, if N\lﬁjipf =0Q), ifvy=0, and ¢ =0, we have,
1. By =T 'Z'JrZ = AjAsA; + Ay, + O, (T7Y/2).
2. By=N"UT2Z'Jr XINX'JrZ = AsAfPr AN} + O, (Exh) -
3. By =N"2T3Z' Jp XINX'Jr XInX'JrZ = A AP AP AsAf + O, (E3%)
b By=N"UT2Z' Jr XInX'Try = A AfPrAsB; + O, (Exh) -
Therefore,
B=(T"'2'JrZ) N VT2Z'JrXInX'IrZ
$ (N2 T 32 Jp X INX T X I X 0 Z) " N T2Z2' I X In X Jry
=B, BBy By

satisfies

o -1 -1
B (ApApAy +80)  ApAfPrApAs (ApAfPr AP AAs ) ApAsPrAsB;.

Proof:

Note that ﬁl = F, and 32 = Fp and their probability limits are established in Lemma 4. The
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expressions for Bg and B4 are handled below.

By =(N?*"1T3)" Y AF' Jp F®' Jy®F Jp F®' Jy®F JpFA + AF' JpF®' JNy®F Jp F&' Jy®F Jpw
+AF JrF® IJNOF JrF®' Jne' JrFAN + AF JrF®' JNOF JrF®' J ne' Jrw
+AF' JrF® e JreJN®F' JrFAN + AF' JrF®' Jne' Jred y®F Jrw
+ AF JrF® Jye' Jredne' JrFAN + AF' Jr F®' Jne' Jred ye' Jrw
+AF' JrF® INOF JreJy®F' JrFA + AF' J7F®' JN®F JreJ y®F Jrw
+AF JrF® IN®F Jredne' JrFA + AF JrF®' JNy®F Jred e’ Jrw
+AF' JrF®' Jne JrF®' INPF' JrFA + AF JrF®' Jne' JrF®' In®F' Jrw
+AF JrF® Jne' T F®' Jne' JrFA + AF' Jp F®' Jne' T F® Jye' Jrw
+ W IJrF®' IN®F JrF®' IN®F JrFA + W' JrF®' INOF' Jr F®' JN®F' Jrw
+ W I F®' IN®F JrF®' Ine' JrFA + &' Jr F® INPF I F® Jye' Jrw
+ W IJrF®' Jne' JreJn®F' JrFA + W' Jr F®' Jne' Jred y®F Jrw
+ W I F® Jne' TJredye' JrFA + ' Jp F® Jye' Jred ne' Jrw
+ W IJrF®' JN®F' JreJ N®F' JrFN + W' Jr F®' JN®F' JreJ O F' Jrw
+ W I F®' INn®F Jredne' JrFAN + W' Jr F® IN®F Jred ye' Jrw
+ W JrF®' JNe' Jr FO®' IN®F' JrFAN + W' I F®' Jne' IrF®' In®F Jrw
+ I F® Ine' Jr F® Jye' JpFN + W' Jr F®' Jne' Jp F®' Jye' Jrw
+AF' JreJN®F' JrF®' IN®F' JrFA + AF J1reJy®F' Jr F®' JN®F' Jrw
+AF JreJN®F JrF®' Jne' JrFN + AF JpeJN®F JrF®' J ne' Jrw
+AF' Jredye'JreJn®F' JrFA + AF' Jred ne' JreJ y®F Jrw
+ AF Jredye' Jredne' JrFA + AF Jredye' Jred ne' Jrw
+AF' JreJN®F' JreJN®F' JrFA + AF' JreJN®F' J1reJn®F' Jrw
+ AF JreJN®F Jredne' JrFAN + AF JreJN®F Jred ye' Jrw
+AF' Jred e’ JrF®' IN®F JrFAN + AF Jred e’ JrF®' In®F Jrw
+ AF Jredne' JrF®' Ine' JrFAN + AF JreJ e Jp F®' Jye' Jrw
+ W JreJN®F' Jr F®' JNPF' J7FA + W' J1reJn®F' Jr F®' JN®F' J 1w
+ W' IreJN®F JrF®' Jne' JrFA + W' Jred NOF I F® Jye' Jrw
+w'IJredne' TreJn®F JrFAN + W' Jred ye' Jre N®F' Jpw

+ W Iredye' Jredye' JpFN + W' Jred ye' Jred ye' Jrw
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+ ' JreJNPF JreJ NOF' JrFA + W' JreJ NOF Jre O F Jrw
+ W' TreJn®F Jredye' JrFA + W' Jred y®F Jped ye' Jrw

+ ' IJreJne' Jp F® INPF' JrFA + W' JreJne' Jr FO® INPF Jrw
+ W Iredne' JrF®' Ine' JrFA + W' Jred ye' Jr F®' J ye' Jrw)

=(N* T 'AF' JrF® IN®F JrF® JNy®F' JrFA + O, (E3}) -
The final equality follows from Assumption 2.1, Lemmas 2 and 3 and equation A2.1. Further, note that

(N2 T HAF Jr F®' IN®F T F®' Iy®F JrFA'
1

7 (N~ T"YAF' JrF&' Jy®F') Jr (N~ T ) AF' JrF®'Jy®F')

1 /
-T (AfAfPff + O, (“NT)) Jr (fPfAfAf + 0, (“NT))

fJ f
=AyAfPs PrAsAf' + 0, (Exy)

:AfAfPfAfPfAfAf’+op (1/VT) + 0, (25%).-

We have used the result from the proof of Lemma 4.3 in the third equality. Standard arguments,
then, give us the fourth equality and the final equality follows from assumption 2.1. Hence , 33 =

N=2T3Z' Jp X InX' T XINX'JrZ = AsAsPiA;PrAsAS + O, (S35

NYT?3, =AF' JrF®' Jy®F' JrFB+ AF' Jp FO JN®F Jrn+ AF' JrF&' Jye' I F3
+AF JF®' Jne' T+ O I FO' INSF JrFB + W Jp F®' IN®F' I
+ W I FY INe JrFB + W I F® Ine'Jrn+ AF JreJy®F' JrFB
+ AF' JreJN®F I+ AF Jpedye' JrFB + AF Jred ye' Jrn
+w'JreJN®FIrFB + W' JreJy®FJrn + W' Jredne' JrF3
+w Iredye' I

—N"UIT 2 (AF J7F® Jy®F J7FB) + 0, (x4 .

The final equality follows from Assumption 2.1, Lemma 2 and equation A2.1.
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Further, note that, since A = { A; 0O ] (Assumption 5) and 3 = (ﬁ/f,O’)’ (Assumption 1), we have

A(T'F'JrF) (N @' IN®) (T 'F'JpF)B=A; (T'fJrf) (N &, In®;) (T fIrf) By
+Ap (T f'Irf) (N1 @, In®,) (T 'g'Irf) By
+ A (T f Trg) (N V1@ IN®s) (T F I f) By

Nd’g*d’f
+

Ap (T7Y2f Trg) (NP0 @, Ty ®,)
% ( ~1/2 /JTf> B,

=AfAfPrAfBs+ O, (“NT)

The final equality follows from Assumption 2.1, 4 and Lemma 2 and equation A2.1.
Hence, B, = Z'JrXJInX'Jry = AsAsPrApB; + O, (Eyy). Combining these results give the
probability limit of B stated in Lemma, 5.
Using Lemmas 1-5, we now prove Theorems 1(a), 2, 3(a) and 4(a).
Theorem 1(a) Let Assumptions 1-6 hold and v = 0 and ¢ = 0. Additionally, if N\l/_;f = O(1), then

we have,

Ginf — Eeern = Op(ENT)
Proof: Let f = ZS 1 7. . We have,
N _ _ _ _ _ _ -1 _ _
Yt+h,f =Y + (N wa ! (.’I)t - m) sz) (N 2wa 3WI)(ZSXwaz) (N wa 2‘/VIXZSXy)

B+ F'B; + Op(T %) + (£, ~ F) PrAsA; + O, (E31))

—_ —1 —
X [AfAfPr AP AsA} + O, (ENT))] (AfAfPrAfB; + Oy(ENT))

- _ - —1 —_
=Bo+ F'By + Op(T2) + (£, — F) PrAsA; [Ar AP AP AN ApASPrALB; + Oy(ExT)

=B + f;PfAfAlf [AfAf’PfAfPfAfAf] AfAfPfAfﬁf + 0 (HNT)
=60+ fiB; + O p(EnT)

=Eye1n + Op(Eny)-

The third equality follows since, for any invertible matrices A and A + B, we have:

(A+B)'=A1'-A"'B(A+B)', (A2.2)
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which implies that:

(AFAPrAPIAGN) +O,(E0)) = (ArA;PrAPrALN))
— (A AfPIASPIALAY) " O,(ERY)
X (Mg A;PrAFPrAA) + 0y(ERE))
= (ArAfPIAPIAA}) " = 0,(1)0,(ExT)0,(1)

—1 —_
= (AfAfPrAfPrAGA) = Oy(Eny)-

The final equality comes from Assumptions 4 and 5, which require Ay, P¢, and Ay to be non-singular.

T
The stochastic orders in the expression are obtained using Lemmas 4 and 5 and noting that M =

T
0,(T~1/?).

Theorem 2 Let &; denote the i*" element of &. Let Assumptions 1-6 hold and v = 0 and ¢ = 0 and
P; =1, Then for any i,
NU1a; —2— (¢, — N1 ds) By

T,N—

)

Proof: é&; = S;é&, where S; is the (1 x N) selector vector with i*" element equal to one and remaining

elements zero. Using the expression for & we have,

&; =N"YT7 'S, INX'JrZ (N—?wfT—3Z’JTXJNX’JTXJNX’JTZ)‘1

XN Y T2Z' Jr XInX'Try.
From Lemma 4 and 5, we have
&; = N_waiJNgbfAfA} (AfAf’PfAfPfAfA’f)_l Ay AyPrAB+0p(1).
The expression S;J y®; has the probability limit ¢;5 — Nll’f*lgbif as N, T — oco. Therefore, we have that

~ _1—\/ —1
NY1&q I (fip = NV G) ApAy (Mg AP AP AGAY) T ArAfPrA By

Using the fact that Py = I this reduces to (¢if — Niﬁf_lgbif)/ B

Define Gg = ,fi'l_lﬁz (AfAfPfAfPfAfA})fl (AfAfPrAy), where B, and 3, are defined in Lemma

5.
N1I-%s
Theorem 3(a) Let Assumptions 1-6 hold and v = 0 and ¢ = 0. Additionally, if W = O(1), then

we have,

B —GsB; = 0,(Exh).
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Proof:

B=(T"'Z'JrZ) N UT2Z' I XInX'IrZ
X (N2 T2 Jo X I X' Tr XINX'TrZ) " N T2 Jp X In X Ty
=B1 By (A AfPIAPIAN; + 0, (Exk)) " (AsAPIALB) +Oy(Ex1)
=B, By (A AP APIANS) " (AyAPrAS) By + Op(ErY)

=G0 + OP(EI_VlT)'

The stochastic orders in the expression are obtained using Lemmas 4 and 5. The second equality follows

by employing the identity for the inverse of a sum of two matrices as in the proof of Theorem 1(a).

Define H; = F4F; AyA; Py and Hy = F4Fy [N~ T2/ J7 X T o).

N1=¥s
Theorem 4(a) Let Assumptions 1-6 hold and v = 0 and ¢ = 0. Additionally, if I = 0(1), we
have,
F,—(Ho+H¢f,) = Op(Sxy)-
Proof:

F,=T'Z'J,Z (NﬂbfT*2Z’JTXJNX'JTZ)’1 N YT Z' Jr X Ty,
~ ~—1
=FaFp [INYT'Z'JrXJIn¢o+ A AfPrf + O, (Ex7)]
A A — AoA 1
Y INTUT Z' Jr XTIngo| + FaF g ApAfPrf, + O, (Exk)

=Ho+H;f, + 0,y

Second equality follows from employing the expression for Fc,t in Lemma 4. H;'Gps = I can be verified

easily given Assumptions 4 and 5.

Remark 7. The proofs of Theorem 1, 2, and 4 can be approached in an alternative manner. We can
demonstrate that, for the matriz Ho = FAﬁ’ng/JTXJN@f, Ft converges to Haof, at the rate En,
while ﬁ converges to H’z_lﬁ at min (\/W, \/T) rate, under the assumptions of our model. Therefore,
by specifying a different limit, we can establish faster convergence of B to that limit. FEssentially, we
require that rotations in F, and ,3 be nullified upon multiplication, which occurs with this newly specified
limat.

However, we specify the matric H y such that B converges to H’filﬁ at the slower Znr rate. We do

this for simplicity of exposition, noting that the convergence rate of the target depends on the convergence
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rates of both F, and B Consequently, any improvement in the convergence result for [3 is not useful
unless the rate for F, improves as well.

In Kelly & Pruitt [2015], they specify the convergence of F, to HF,, where H = Z'Jr XJn® at
a VN rate. In our weak factor context, this would be a VNYs rate. However, this matriz H is not
square unless there are zero irrelevant factors. FElements of HF'; are linear combinations of relevant
and irrelevant factors. Therefore, their convergence result can not be employed in our context to obtain
faster convergence for the target estimator. We must establish convergence of our factor estimates to

some rotation of relevant factors.

A3 Proofs of Theorems 1(b), 3(b) and 4(b)

We introduce 3 Lemmas which shall be employed for subsequent proofs (Theorems 1(b), 3(b), 4(b))
which deal with the general setting of ¢ # 0 and v # 0.

Lemma 6. Let Assumptions 1-3 , 6, 8 and 9 hold. Additionally, let % = O(1). Then,
1. NT'T=1V2e' Jred yey = Oy (Syr) -
2. N'T=3/2¢'Jred ne'Jre = O, (657)-
3. NT\T=32F ' Jred ye'Jre = O, (6yr) .
4. N~Vi2T=1@' Jne' Ire = O, (Eny).
5. N7IT=32w' Jred ye'Jre = O, (Oy7)-
6. N'T=320 Jred ne'Jre = O, (On7)-

7. (a) T"YV2F'Jre = 0,(1) and T V2w Jre = 0,(1).

To prove this lemma, we need to show the following,

Let Assumptions 1-3 and 6-8 hold. Then, for all ¢, m,

N-ip-1/2 ZEs(m)Eisffit =0y (On1) -

Proof: Adding and subtracting terms, we can write the above as,

N_1/2 N_l/QT_1/2Z€S(m) [51‘351‘1& _Uz’i,st] +T_1/2 N_lzes(m)aii,st
] i,

=I+1I
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E AN'i1 Zi,s €s(m)01i75t

second term is O, (T*I/Q).

< N~'max, E|es(m)| > isloiistl = Op(1) by Assumption 3.1 2.3. Hence, the

For the first term to be O, (Nfl/z), it is sufficient to show that

2

E|(NT)~/? Zss(m) [eis€it — Tiist)| <M
1,8

Proof: Using Cauchy Schwartz inequality twice,
E (NT)71/2 ZES(m) [€is€it — Tiist)

=E | (NT)™! Z es(m)ew(m) [is€it — Oii st] [Eju€it — Tjj ut]

1/2

o\ 1/2

< |E|(NT)™" Y [eiscit — i il [Ejuit — Ojjut]

1,7,8,u
N 1/2

1/4 1/4
<max (Eley(m)[') " (Elea(m)*) " | E|(NT)™Y2 Y [eiszic = 0t o] <o
by Assumptions 2.3 and 3.2. Therefore we have that,
N-lp—1/2 Zes(m)eissit =0, (657) - (A3.1)

Now we can prove Lemma 6

Item 1 = N~'T~1/2¢' Jped yey has generic m'" element given by

N-T—1/2 Z es(m)eisei — N—271/2 Z es(m)eise i

1,758

— N7 3/2 Z es(m)eiueit + N—27—3/2 Z es(m)eiue;i

7,8, 1,J,8,U

=1I-1I1-1IIT1+41IV
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1.1is O (5;,1T) by equation A3.1.

LII=N"'Y2(N7" ) (T—Wzgs gls> Ui > (T‘lzas(m)sis> N72N e
€A, N PEAS, . s j
N~Y20,(1)
:Op <N71/2)

by Assumption 8 and Lemma 1.3.
LIIL is O, (65T~ %/?) by Lemma 1.3 and 1.10.
LIV is O, (N71T~1/2) by Lemma 1.3. Summing these terms, Item 1 is O, (6y%)-

Item 2 : N™'T—3/2¢' JreJ ye'Jre is a N x N matrix with generic (my,ms) element,

NTIT32N e (ma) eisuer (mo) = NTIT752 3" ey (my) eisginen (M)
2,8,t 2,8,t,u
— N_lT_5/2 Z Es (ml) Eit€iucu (m2> + N_lT_7/2 Z Es (ml) Eit€iuCov (m2>
1,8,t,u 1,8,t,u,v

+ N727—3/2 Z (m1) eisejuer (ma) + N~ 2=5/2 Z s (M) €is€jien (M2)

1,7,8,t 1,5,8,t,u
+ N2/ Z es (M) eugjueu (my) — N72T77/2 Z €s (M) i€ jucn (M)
1,3,8,t,u ,7,8,t,u,0
=2I—-..-—2. VIIL

2.1 can be wriiten as,

-1/2 (T‘1/2ng(m1)5is> <T_1/225t(TTL2)€it>

ZE(Am1 Ul e)
+ L > T ea(mi)eis | ([ T71) er(ma)es
N |
1€(Amy,cUAmy e)° s t

:OP(T_l/Q)v
. . T
by Assumption 8, given that N O(1).

21Ilis O, (5&%T‘1/2) by Lemma 1.3 and equation A3.1. Item 2.III is identical.
2.1V is O, (6507 ~") by Lemma 1.3 and 1.10.

60



2.V can be written as,

_ _ _ T/? _
T 1/2 N1t ‘ Z (T 1/2 ng(ml)gis> + N (T ! Zes(ml)gis>
1€A M, - s i€Ag, . s
T1/2
x |N71 Z T71/2Z€t(m2)€jt + T Tﬁlzé‘t(mﬂﬁjt
€Dy t jen,, . ?

1/2
This is O, (T_1/2) by Assumption 8, given that N = o(1).

2.VI is given by

T1/2
NTRTTHINTE Y (T—1/2Zes(m1)sis>+N (T*Zes(mnew)
s 1EA

iEAml €

> Nﬁl/QT?l/QZEjt <T1/2 ng(m2)>
7.t v

~0, (N—1/2T—1)

by Assumption 8 and Lemma 1.3. Item 2.VII is identical.
2.VIIL is O, (N~'T7~3/2) by Lemma 1.3.

Summing these terms, Item 2 is O, (5;,1T)

Item 3 = N 1T 32F Jred ye' Jpe = o, (5;,1T) is a K X N matrix with generic (mq,mz) element

]\7_1T_3/2 Z FS (ml) E;is€itEt (mg) — N_lT_5/2 Z Fs (ml) Eis€it€u (mg)

it ity
— N~lp5/2 Z F, (m1) €4€iuey (M) + NTIT77/2 Z Fy (my) €i€ingrn (M2)
2,8,t,u 2,8,t,u,v
+ N7273/2 Z Fy (my) eisejier (ma) + N—27=5/2 Z Fy (m1) €is€jt0 (M2)
4,9,8,t 4,5,8,t,u
+ N72T75/2 Z F (ml) €it€juu (mg) — N72T77/2 Z F (ml) €it€juu (mg)
©,J,8,tu ©,J,8,t,u,v
=31—..-—3 VIIL
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3.I can be written as,

Tfl/Q N71 Z <T1/2 ZFs(ml)ais> <T1/2 th(m2)5it>

TN
T1/2
N Z Tﬁl/QZFs(ml)é‘is 71! Z&t(m2)€it
ieAan’E s t
:Op(Til/Q)
T1/2
by Assumptions 3.6 , 8 and the fact that = O(1).

311 =0, ((51:,%77_1/2) by Lemma 1.3 and 1.12.
311 =0, ((5;,%,«) by 2.1 and equation A3.1.
31V =0, (5&5«T‘1/2) by Assumption 2.1, Lemma 1.3 and 1.10.

3.V can be written as,
T-1/2 ([N—l Z <T—1/2 ZFs(mQ&is)}
-1 —1/2 T2 1
x |N Z T ;Et(mQ)gﬁ + N Z T gat(mg)a‘jt

$€A g e N

o, (1-17) |

T1/2

by Assumption 3.6, given that =0(1).

N-/2p-1 ( N1 Z <T1/2 ZFs(ml)ais>]
« N71/2T71/2Z€jt (TI/QZEu(m2)>
7,t U

~0, (N*1/2T*1>

3.VI1 is given by

by Assumption 3.6 and Lemma 1.3.

3.VII is given by

N71/2T71 (Tl Z Fs(m2)> N71/2T71/2 Zeit
s it

o |yt Z <T1/2Z€u(m2)€ju> N T;\;? (Tl Zsu(mg)eju>

FEAMm, . jEAS

mo,e

_o, (v12r1)
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by Assumption 8 and 2.1.
3.VIIl is O, (N_lT_l) by Assumption 2.1 and Lemma 1.3. Summing these terms, Item 3 is O, (6;,;«)

b

Item 5 and Item 6 follow similar steps as 3

Item 4 is a K x N matrix which can be partitioned as

—r/2—1g/ /
Niwf/QTil‘I)/JNE/JTE = N r (I)fJNE Jre
waf/zT*lq);JNE/JTE

We show that N~V//2T-1&" J ye'Jre is Op(F]_V;T). Similar arguments would establish
NYa—0y )

N=Ys/2T1®| Jye'Jre is Op(Ty.7), which implies N~V//2T~1®] Jye'Jre is O, ( T
N,T

ng_wf
T - p

Hence the matrix N=¥+#/27-1&®' J ye' Jre is o, (I‘NfT V =0 (Ef\,lT)

In,r
Below, we show that N~¥//2T 1@} Jye'Jre is Op(Ly; 7).

N‘¢f/2T_1¢’}JNe’JTs is a Ky x N matrix with generic (m1,m2) element

N—vs/2p-t Z bif (1) s (o) gy — N~¥r/2717—1 Z Giy (m1) e (Mm2) €

it it

— N7UPT2N e, (ma) dj5 (ma) i + N™VI2TIT72 N " e (mg) dig (ma) €5

Jss,t 4,585t

=41—-411 - 4111+ 4.1V.

4.1is O, (T3}7) by Lemma 1.16.

401 is N¥Ys/27=1/25 1. (z\f—lT—l/2 PO (mg)ejt) (N=%1¢;5 (m1)) which is O, (NYs/2T=1/251) by
Assumption 2.2 and Lemma 1.10. If NTW = O(1) then this is O, (I‘;\,iT)

AT is T—1/2 (T*l 5, (zj N=%#/2¢. : (my) ajt)) (T2, &5 (m2)), which is

Op (T*1/2) by Assumption 3.7 and Lemma 1.3.

4.1V is equal to (N St (N=Y1 3, by (ma)) (Nfl/QTfl/2 Do sjt) (T=123 25 (mo))

which is O, (N e T’l) by Assumption 2.2 and Lemma 1.3.

Summing these terms, N*’pf/2T’1<I>'fJN€’JTE is Oy (I‘J_\,}FT) and hence N’wf/2T’1<I>'JNE/JTE is

Nbg—y .
Op <FNfT V I‘]VT) = Op (‘:‘NIT)

Item 7:

(a)
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by Assumption 2.1, 3.6 and Lemma 1.3. 7(b) follows using the same argument and employing Assumption
2.4, 3.5, and Lemma 1.3.

N1=¥s T
Lemma 7. Under Assumptions 1-5,8 and 9, if =0(1) and — = O(1), we have,
VT N

1L FA=T1'Z'JrZ = AjAfA; + (T Tre) ¢+ Ay + O, (T71/72).

2 Fyp=N"UT22'Jp XInX'TrZ = AjA;PiAfA) + O, (Sxk) .
3. FC,t =N"YT1Z'JpXInzy = NV T Z' Jr XTI ndo + A AsPrfy + O, (Ej\,1 )-

Consequently, the probability limit of F is

F, T’N—”gm (AfAGA} + ¢ (T Tre) ¢+ AL) (As AP AN (N T Z' T r XTI ndo + As AP F,) .

Proof:
Fo=T7'2'J0Z (N VT 22" Jr XINX'JrZ) " NPT 2" Jr X Ty,

We look at all these terms separately,

Fu=1"'Z'JrZ
=A(T7'F'JrF)N + A (T7'F'Jrw) + (T7'w'IrF) A + T7 '/ Jpw
+A(T'F'Jre) ¢ +¢ (T IrF) A+ ¢ (T Jpw)
+ (I W/ Jre) ¢+ ¢ (T e Tre) ¢
=AApA + ¢ (T Tre) ¢+ Ay +O0,(T71?)

=AfAGA; + ¢ (T Tre) ¢+ Au + O,(T73).

The limit follows using Assumption 2.1, 5, Lemma 4 and 6 and noting that ¢ has a finite number of

non-zero entries by Assumption 9.

Fg=N"YT72Z'J; XINX'JrZ
=N"YT72 (bpA) + FA +w) Jr XInX'Tr (tr Xy + FA' +w)
+ NI 2 Jr X InX'J7 (LX) + FA' + w + e¢)
FNTYT2 (b Ay + FA +w +el) Jr XInX'Jred

=1+ 1T + III.

The probability limit of I was established in Lemma 4. Also note that II is transpose of III. We establish
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the probability limit of III below.

U =N"%T2 (tp Ay + FA +w +e¢') Jr X Iy X Trel’
=A(T'F'JrF) (N~ &' JN®) (T 'F'Jre) '+ A(T'F'IrF) (N T '® Jye'Jre) ¢
+A (N YT F'Iredy®) (T F'Jre) (' + (T7'W'JrF) (N @' Jn®) (T F'Jre) ¢

+ (T7'Ww'IrF) (N T '@ Iye' Ire) ¢+ (N T ' Iredn®) (T F'Jre) ¢
+¢ (T JrF) (N @' IN®) (T 'F'Jre) '+ ¢ (T TrF) (N T '®' Tye' Tre) ¢
1-9y

+ ¢ (NYT e Tred y®) (T F'Jre) ¢ + NW

N1=¥s
¢ (N*WT 3/2¢! Jred ye! JTs) ¢
VT

(N—¢f T—3/2w’JT5JNs’JTE) ¢

N1=¥s

VT

A (N*WT*B/QF’JTEJNE’JTE) ¢+

The final equality comes from Lemma 2 ,6, equation A2.1, Assumption 2.1, 4 and noting the fact that
¢ has finitely many non-zero entries given Assumption 9. Hence, Fp=N"%T2Z'Jr XIyX'JrZ

= AfAfPfAfAf + O (‘—'NT)

Fo,=N"YT71Z'JrXJyx,

=N"YT1Z' Jr XTI ngo + N"YT7 (er Xy + FA +w) Jr XTI nw, + ¢ (T JrF) (N~ @' Iy ®) F,
N1-vs
VT

+¢ (T JrF) (N ® Tney) + (NI e/ TreJn®) Fy + ¢ (N—lT 1/2 ’JTsJNet)

=N"UT'Z'Jr XIndo+ AfAsPrf, + Op(En).
The stochastic order of the second term was established in Lemma 4 which yields the order here since all
terms except the first two are OP(E&lT) given Lemma 6 and the fact that ¢ has finitely many non-zero

entries by Assumption 9.

Continuous mapping theorem yields the plm of Ft.

NI-v T
L . A ) 1-5 =0(1 — =0(1
emma 8. Under Assumptions 1-5,8 and 9, if ——— \/T O(1) and N O(1),

1. /él :T_1Z/JTZ = AfAfA/f +C(T—IEIJTE> C,+Aw +Op(T_1/2),
2. 52 N~YT2Z'Jr XINX'JrZ = AfAfPfAfAerO (“NT)

3. By =N2UT3Z' I XInX T XINX'JrZ = AsAsPrAfPAsAf + O, (Exy) -

4. By=N"UT2Z JrXINX'Jry = AsAsPsAsBs + O, (Exh) -
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Therefore,

B=(T"'Z'JrZ) N UT2Z' I XInX'IrZ
X (N2T 32 Jp XINX Tr XIn X' JpZ) N~ T2 I X InX Ty
A—lAr a—1nx
=B1 BaBs Ba
has the the probability limit under Assumption 6 given by,

B (AfAfAG+C (T Tre) ¢+ AL) ApAfPIAGAS (AsAsPi AP AAS)

X AfAfPfAfﬁf.
Proof:

B=(T'Z2'JrZ) ' NUT2Z'Jr XInX'IrZ
$ (N2 T 32 Jp XINX Tp X I X TpZ) " N T2Z2' I X In X Jry
A—lar ~A—1n
=B1 B2B3 Ba-

Note that Bl = F, and Bz = Fp and their probability limits are established in Lemma 7. The expres-

sions for ﬁg, and ,34 are handled below. Note that,

FodrF,

By = N 20T 3Z' JpXInX'JpXINyX'JrZ is essentially the product where Fo is

obtained by stacking FA’c}t horizontally. Using the probability limit of 1:"(;7,5 obtained in Lemma 7

A ~/
FcodrF
standard arguments would imply that plim (CTTC> = A APy (TflfJTf) PrAsAs" which
is equal to AfAfPrAfPrAfAs’ given Assumption 2.1. Using Lemma 6 and the expression for
S ~/
. FodrF
Fc, in Lemma 7 we can establish that N2 T3Z'Jr XInX'Jr XINX'JrZ = % =

A AfPrA;PiAfAs + Oy(ExT)

By =N""T72Z'Jr XINnX'Jry
=N"UT72 (bp Xy + FAf +w) Jr XIn X' T 1 (brBo + FB+m)
+ N YT 2 T XINX'Tr (brBo+ FB+evy+m)+
N~ T2 (bp X+ FAf +w + ) JrXInX'Jre
0 f Y T N TEY

=1+ IT + III.

The stochastic order of T was established in Lemma 5. TIT is O,(Ey%) , which can be seen simply by

replacing ¢’ by 7 in the IIT term of expression of F in Lemma 7 and noting that (% =0 = (= O)
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by Assumption 9. We look at the transpose of II below.

' =N"YT72wrBo+FB+ey+n) JrXInX'Jrel’
=B (T"'F'JrF) (N " ® Iy®) (T 'F'Jre) '+ 8 (T7'F'IrF) (N T '® Jye'Jre) ¢
+B8 (NUT'F' Jredy®) (T 'F'Jre) '+ (T7'0JrF) (N~ @' IN®) (T 'F'Jre)
+(T7'n'JrF) (N YT '@ Iye'Ire) ¢+ (N T ' Jredn®) (T F'Jre) ¢
++ (T7'eJrF) (N @ In®) (T 'F'Jre) ¢ ++' (T7'eJrF) (N T '@ Jye' Tre) ¢
N1-=vs
VT

i (N*WT’S/QF’JTEJNE-:’JTE) ¢+ N
VT

+ o (N T e Tred @) (T F Jre) ¢ + (N T2 Jredne' dre) ¢

N1=¥s

VT

:OP(EﬁlT)-

+

~' (N’wa’3/2e’JT€JN€’JT€> ¢!

The final equality comes from Lemma 2, 6 and noting the fact that ¢ and « have finitely many non-zero
entries given Assumption 9. Therefore, 64 =Ar AP AB + Op(Ex,lT).
Given the probability limits of Bl, BQ, BB and , ,34, Continuous mapping theorem yields the probability

limit in the statement of Lemma 8, i.e.,

B Iy (ApAsAf +C (T Tre) ¢+ AL) " AfAfPrAA; (A AFPIAPIAAL) " ApAPAB.

T,N—o0

NI-v T
Theorem 1(b) Let Assumptions 1-9 hold, —= = O(1) and — = O(1), then
VT N

Utrn,f — EWernlFi) = Op(EnT)-

Proof: From Lemma 4, 5, 7 and 8, we have established that
o N"UT V@, — &) INX'JrZ = Fcy — Fo = (f, — F) PrAsA} + Op(ER).
o N2 TB3Z' Jp XINX'JrXINX'JrZ = A AfPrAfPrAf A} + Oy (ERh).
o N VT 2Z'Jr XINX'Jry = A AfPrABf + Oy(ENy).

Given these results and the fact that for all i, 7-1/2 > ¢ €it = Op(1) by Lemma 1.3, we get that g, ypn, 5 =

Bo + F}B + O,(E57) using the same steps as in the proof of Theorem 1(a).

The Proofs for Theorem3(b) and Theorem4(b) respectively, follow similarly given the rates derived in

Lemmas 7 and 8.
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A4 Proof of Theorem 5

We now proceed to prove Theorem 5 which deals with stage 2 of 3PRF-Lasso. We introduce 2 Lemmas

which shall be used in the subsequent proof of Theorem 5

Lemma 9. Define Z;; = QZA)OJ +F;(}5i, where g?)g_,; and (252 are obtained from stage-2 Pass 1 regression. Let
NI—¥s
VT

T
Assumptions 1-6 and 8 hold, =0(1) and N O(1), then

Eit — (Sz‘t + 9;@51@ - j‘ﬁz’g) = OP(EXIIT)

Proof: The proof proceeds in a similar manner to Theorem1(b). The target y can be replaced by x; and
the proof follows similar steps.

First notice that, using the same steps as in proof of Lemma 4 for F B, We can get
NUT?W' ;Sxe, =A(T'F'JrF) (N &' JN®) (T'F'JrF) ¢, + O, (E37) -

Employing the fact that A = [ Ay 0 ] (Assumption 5), we have

A(T'F'JrF) (N ®'Jy®) (T"'F'JrF) ¢,

= Ap (T T f) (N1 2y In®y) (T T2 f) b
+Af (T f'Irf) (N @ IN®,) (T7'g'Irf) ¢
+ A (T Trg) (N 2, In®s) (T T2 f) biy

N"bg_wf
+

A (T72F Trg) (N~ @, Tn®,) (T2 T2 f) 6,5
+ A (T ' Irf) (N @ In®y) (T f T 1rg) ¢
+Ag (T7Hf T f) (N @ In®) (T7g' T1rg) ¢4

+Af (T f'Trg) (N V1@, In®y) (T f Trg) ¢y
ng_wf

VT
= AfAfPrAf + Oy (ENT) + Oy (Ent) dig

= Ar AP Asbiy+ 0y (Exry) -

+

Ay (T—1/2 f’JTg> (N @, In®,) (T g'Irg) b4,

The result follows from Assumption 2.1 and 4. Substituting this in the expression of Z;; we get,
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gy =2;+ (N"WT " (zy —2) Wxyz) (N72wa73W/XZSXXWXZ)71 (NP T*W'y ;S xa,)
= 00+ F 9, + 0)(T72) + (£, - F) PrAsA} + O,(Ex))
X [A; AP AP AN} + O, (ERE)] T (ArAfPrA o, + Oy (Er)) diy + Op(ERY)
= ¢o,i + f/¢if +3' b1y + O0p (T ) + (£, - f)lfplAf,lA/f
X [A;AAPIALPIALIAG] T Af AL PIA G+ Op(ExT) + Oy (E3T) ¢4
= $0,i +9'Gig + Op(T %) + fFiP1A;1A]
X [A;AAPIALPIA AT Af AL PIA G+ Op(ExT) + Oy (E3T) ¢4
= ¢0i+ G biy + Frhis + O,(Exy) + O, (Ent) big
S = mi — Ty = (o + giPiy + fi‘ﬁif +eit) — (Go,i +9'¢;, + fi(ﬁz‘f +0,(ENT) + 0y (EX/lT) ¢ig)
—> &t — (cit + 91Piy — G biy) = Op(Exy) + Oy (Ent) big
= i — (it + 910y — ' ¢15) = Op(ExT).

The stochastic orders for the matrices N~/ T~! (x; — ) W xz and N~/ T3W', ,SxxW x» were

T
obtained in Lemma 7 and 8 respectively. Noting that % = Op(T_l/Q) by Lemma 1.3, we obtain

the second equality.

Lemma 10. Define n =u — v, where t =y —§; =y — 17y — JTFB.

o (30 ) el = max (552 ) etn + 0,(0)
Proof: Adding and subtracting terms,

max <H;V7T> &in = (H;T) max (ei + Jrgdi,) m+ (f) max (ei + Jrges,) (1 —m)

’ (E’;T> max (&i — (& + Jng)ig))ln + (:;T) mpx (& — (e + Jng’ig))/ (7 —mn)

=I+ 11+ I +1V.

We show that I = max; (T) gin + Op(1) and II, IIT and IV are O,(1).

Item I:

max (:J;T) (ei + Jng)ig)/n = (:;T) mzaxsg?”[ + <:§V”T> (mlax d)ig) g' I

= max (T) 'm+0,(1). (Ad.1)
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= 1
Where the final line follows from the fact that —— i@, is O

/
J
ng/T2n is O,(1) by Lemma 2.2.

Ttem II: Note that n — 1 = (y —Y;— E"‘/) — (y g — é"y) = (g)f — yf) + (€ — &) ~. Therefore,

(Z;T) (si+ Trgdy,) (7 —m) =

=A; +B; +C; + D;.

Notice that terms A;, B;,C; and D; are all scalars. Therefore A; = || A;]l1 = || Aillco- Same holds for
B;,C; and D; . We use this fact throughout the proof. We look at all these terms separately. From
Lemma 2 and the expression for y in the proof of Theorem 1(a) and Theorem 1(b), we have that

('gf — yf)/ = Op(E;,lT)F’JT +0,(1) (Fc — AfAfPff'> Jr +7.(tr€s) +(erm)’. Therefore,

ENT N !/
Ai = <T) (yf - yf) =
:ENTOP(ExflT) (TﬁlFIJTE?i)

—_

+ Op(l) (T) (Fc — AfAfPff,) JTEZ' + (T) ’Y/S(LTES)IEZ' + (T) (LTﬁ)/Ei

=A; + Ag; + Az + Ay
The first term A1; can be expanded as,

A :ENTOp(EX]lT) (T_lF/JTEi)
=0,(1) (T"'F'Jre;)

=0,(1) (T"'F'e;) — 0,(1) (T"'F'urg;) .
Therefore, by Triangle inequality,
1., 1 , _
[Avilloc < [1Op(Wlloc |l F €illo + 1750 (1) F oo [e7Ei]| o

Since the Op(1) matrix listed above is a finite dimensional matrix, it’s Lo, norm will have the same
order as it’s elements. Also, O,(1)F" is a L x T ,(L < oo) matrix with all elements having bounded
second moments given Assumptions 2 and 3. Hence, its L., norm will scale with at most T and therefore

1
HTOP(I)F’HOO has a maximum order O,(1). ¢7&; has all same elements, hence its L, norm is equal to
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any element in this vector. Hence, we have, Therefore

1 1
max [ Asiloe < [|0p(1) oo max | ZF'eo + | = Op (1) F' | oo max |eEi|
<logN>"3) ((bng)
—0, (=) +0, (=),

The final line follows from Assumptions 7.3 and 7.4. Hence by Assumption 10, max; Aj; is Op(1).

We can expand As; using Lemma 4 as

Ay =0, (1) (T) (Fo— Asaspyf) dre,
=0,()ENT{A (N T 'F' JreJn®) (T F'Jre;)
+ (T7'W'JrF) (N1 @' IN®) (T F'Jre;) + (NWT W Jredn®) (T F' Jre;)
+¢ (T JrF) (N @' IN®) (T F'Jre;) + (N VT e Tredn®) (T F'Jre;)

+A(T'F'JrF) (N~Y T ® Jye'Ire;) + (T W IrF) (N T 1@ T ye' Tre;)

N1-%s C8/2 N1-v¥s s
+ mA <5NTN T F JTEJNETJTE%) + m (5NTN T w JTEJNEJTETi)
NI-%s
+ mc (5NTN*IT*3/2€'JT5JN5JT€1') +¢ (T*lg’JTF) (wa,folq,/JNé./JTei)
A (T ' Irf) (N R IN®,) (T g Tre:) + Ay (T f'Trg) (N @, In®y) (T f'Ire;)
ng_wf

A (7728 Trg) (N Vo @, TN @) (T7'g'Tres)).

Given that ¢ has finitely many non-zero entries by Assumption 9, ||{||s and ||{||1 are both O,(1).
Also, given the orders derived in 2 and 6, and the fact that Zy7 < dny7, we can say that As; is a sum

of 3 type of terms.

1. Ag.1: Op(1) (T F'Jre;) where the O,(1) term is a finite dimensional matrix.

N1-%s De;
VT

having bounded second moments.

2. AQZ'.ZI

where D is a L x T Op(1) matrix, invariant across ¢ and ¢, with all terms

3. A3t EnpO,(1) (N~ T 1@, I ye' Ire;) + EnrO,(T7/?) (N~ T-1®] J ye' Jre;), where the

0,(1) and O,(T~'/?) terms are finite dimensional matrices invariant across ¢ and i.'°

For Ay;.1 , we follow the same proof as in Aj; to show that its maximum value over i is bounded under

Assumption 10.

10T his follows from the observation that A(T71F'JrF) (N*wf 71 <I>’JN€’JTSZ'> =
A (T-1f'I7f) (N*wa*1<I>’fJNs’JTsi> + TV2AL(TV2f T rg) (N*wf @;JNs’JTsi) and noticing that
the rest of the terms pre-multiplying (waf T_1¢-’JN5’JT51-> are O, (T~1/2).
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For As;.2, we have,

‘ N'=%s De; N'=%s || D ‘ el
— | £ — = €
Ve vl 1 L
N1-vs
= 0,(1) Wi mtax|5it|.

We get the final equality from the fact that D is L x T matrix with all elements having bounded second

moments given Assumptions 2 and 3. Hence, its L., norm will scale with at most T and therefore

will have a maximum order O,(1). Hence we have,

N1-%s De;
VT T

N1=%s
=< Op(l)W

max
A

max |e;¢|.
2,t

VT

N1=vs

Under Assumption 10, we have [(log N)™ + (log T)"™] is O(1). Hence,

N1-¥s De;
vT T

max
%

is Op(1).

oo

To show that max; As;.3 is Op(1), we first show that max; [ENT HN’w.fT’“I)}JNE’JTEiHJ is O,(1)
given assumptions of our model. to do so, we derive the stochastic order of a generic (m,1)" element
of the Ky x 1 matrix (max; ENTN Vs T’ltP}JNs’JTei). Since K7 is finite and the stochastic order is
invariant across m € {1,..., K}, the stochastic order of a generic element will be equal to the stochastic
order of the L norm the matrix.

A generic (m,1)!" element of the K; x 1 matrix (max; ENTN*“’fT’li’}JNs’JTs,-) is bounded by

(ENTN—wf/2T—1/2) max N—wf/zT—l/zz¢jf (m) & jee4
Jst

4 (ENTN—l/QT—l/Q)

N—Ys Z(bzf (m)‘ max |[N~1/27-1/2 ZEitEjt
. 3

Jst

+ Enp NPT N RTTEN " g (m) g (max

J»s

)

1
; ﬁgit

1
2 ﬁgit

+ (ENTN_l/QT_l)

N~ Y¥s Z¢lf (m)‘ ]\[—1/2T—1/2ZEJ~S (m?x
1

J»$

)

=a+b+c+d.

(logN)™
VT
> by Assumption 3.7 and

By the definition of Zyr, ExyyN~%#/2 = O(1), which implies a = O, (

(logN)™ (logN)"
VT VT

) by Assumption

7.5. b= 0, ( ) by Assumptions 2.2 and 7.6. ¢ = O, <
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(logN)"
T

10, max; [ENT HN_wa_IQ}JNs’JTEiHJ is O,(1). Given Assumption 6, similar reasoning would

7.3. d = 0O, ( ) by Lemma 1.3 and Assumptions 2.2 and 7.3. Therefore, by Assumption

establish, max; {ENTT_l/2 HN""fT_l@;JNE’JTeiHJ is O,(1). Hence, we have

Enr max { 10,(1) (N= T~ '@} Ine'Tres) ||, + [|0p(1) (N~ T @} I ne' T res) | 1}
SHO;D(I)”l (max {ENT HNiwailélfJNE/JTEiHJ + max {ENTT71/2 ||N7wa71¢’;JN€/JT€i||J)
=0,(1) + 0,(1).

Hence Ag;.3 = O,(1).

1
< h NT N N (1r8s)e; < | ——= ) v (1r84) e; and we h
< , we have, ( T )’)’S(LTE Ve < (\/T) . (trEs) e; and we have

For Ajs;, since

<\/1T> "(LrEs) e = Z’Yjéj <\/1T ;5#> .

JjES

Therefore,

)

=320, (77 ) Outtog )

1 !/ = \/ —
max | — LTEg) € < E €; | max
i (\/T) ’YS( T ) ’YJ ]( H

jES

1
ﬁ;&t

JES
o ()
= 0,(1).

where the second last line line follows from Assumption 7 and Lemma 1.3. The second last line fol-
lows from the fact that the cardinality of S is bounded by Assumption 9. The final line follows from
Assumption 10.

—_
—

W) (trm)'e; is Oy(1). Hence max; A; =max;(Ay; + Ag; + Az + Ay;) is

Using a similar logic, max; ( T

0,(1).

Next, we show that max; B; = Op(1).

B; = (T) (ﬁf - yf)/JTg(pig

=En1O0p(Exy) (T F'J1g0,,) + 0,y(1) (“;T) (Fo - AsAPf) Trgdy,

—_

+ (H;T) L(erEs) Jrgd;, + (H;T) (erm) Trgig

=B1i + Ba; + Bs; + Bua.
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Bi; ... By; depend on i through ¢, only. Since Vm, max; ¢;(m) = O, (1) by Assumption 7.1, it suffices to
show that By; + Ba; + Bs; + Ba; = Op(1) in order to prove max; B; = O,(1). B1; = O,(1) by assumption
2.1. Bs; and By; are Op(1) by Assumption 2.1 and lemmas 1.3 and 1.4. We show Bs; = Op(1) below.

Using Lemma 4, we can expand Bs; as,

ENT

B =0,1) (37 ) (Fo = AraPsf) 190,
=0,(1)EnT{A (N T 'F'JreJn®) (T 'F'Jrgd,,)
+(T7'W'JrF) (N"Y @' Iy®) (T F'Jrgd,,) + (N T Jred n®) (T~ F' Jrgé,,)
+¢(T7'JpF) (N @ In®) (T F'Irgd,,) + C (N VT e Jredn®) (T F' Irge,,)

+A (T 'F'JrF) (N VT '@ Ine'Trge,,) + (T7'w'JpF) (N~ T &' T ye' Trgd,,)

N1-vs N
Nia A (N—lT—3/2F’JT€JN€JTg¢)ig) + JT
N1=%s

Sy (NT32e Jred nedrgdy, ) + ¢ (T TrF) (N~ T T ye' Trgd,,)

+ A (T f'Trf) NV TN ®,) (T g Trgdy,)

11—y

b
) (N—lT—3/2w’JT€JN€JTg¢ig)

+Ap (T ' Trg) (N~ @, In®y) (T7 ' T1g,)
NYs—vs

VT
:OP(I)ENTOP(EZ_VlT) = Op(l)-

+ A; (T—Wf’JTg) (N @, In®,) (T g'Trgd;,)}

The final line follows from Lemma 2 and 6 and the fact that ¢ has finitely many non-zero entries by

Assumption 9.

max; C; = O,(1) follows from similar argument as for max; A; = O,(1). max; C; = max; vy’ (€ — s)/ €; =
max; v (g — 65)/si. The expression for €s — €g can be obtained using lemma 9 as Vi € S, ¢y = 0.
The proof then follows similar steps as for A;.

Similarly, max; D; = O,(1) follows from an analogous argument as for max; B; = Op(1). Therefore

II = maxi(AZ- +B;+C; + +'Di) is Op(l).

We now show item III : <:;V1T> max; (& — (e; + JT9¢1-9))/77 is Op(1).

From the discussion leading upto lemma 9, we can express (T) max; (éi — (ei +J Tg(,bl-g))ln as a
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sum of three terms.

max <:§£T> (& — (ei + Trgdi,))' m

!/
!/
J
= max (N_wa_QW'XszM - AfAfPfAfﬁbif) O,(1)A; APy ! TTT,ENT

7

ENT

l
—+ mZaX (AfAf,PfAfcbi'f) Op(l) (Fc — AfAfPff/) JT77 ( T )

=) 1 'J 'J
Since ;T < Vink we have AfAfPff TTnENT < AfAfPff\/%n = 0p(1) by Lemma 1.2.

Therefore we have P = max;(N~ T *W',Sxq, — AfAfPrAsg, ;) Op(1). We need to show that
maxi(N_wa_2W/XZSXwi — AfAfPfAfQSif) = Op(l).

N~ YT W' ;Sxa, — A AfPiAs,;
=A(T'F'JpF) (N ®'Jn®) (T 'F'Jre;)
+A(T'F'JrF) (N~ T '® Jne' Jre;)

+ AN YT ' F' Jredy®) (T7'F'Jre;)
N1-¢s

VT
NI-¥s

VT
+ (I7'W'IrF) (N~ T ® I ye Tre;)

+

A (N*lT*3/2F’JTsJNs’JT€i)

+

(N_lT_3/2w/JT€JN5/JT€i)

+ (N T W Jredn®) (T F' Jre;)
+(IT7'F'Jrw) (N~ @' Iy®) (T 'F'Jre;)
+0

=1
EnT)Pi-

—~

p

The last term Op(E;ﬁ_,«)gbi captures all the terms in the expansion which have a maximum order of E;V%[
and depend on i through ¢; only. Therefore max;(N~%/ T 2W' ,Sxa, — AfAfPiAs;;) = Oy(1)
since max; ¢; is O,(1) by Assumption 7.1. Stochastic order for the max of other terms follows similar
arguments as in Item I for the term A.

For Q, note that since max; AyAyPrAre;r = Op(1) by Assumption 7.1, it suffices to show that
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/N

Fo— AfAfPff/> Jrn (H;T) = O,(1), which we show below.

E;T (Fc - AfAfPff’) Jrn

=A(T"'F'JrF) (N“/’f (“;T) Jne JTn)

+A(NUTF Jrey® ((:; ) F JTn> + (T W' JpF) (N~ &' Ty ®) ((“;T> F JTn>

)
+ (N T W Jred v ®) (< ;T> F JT") +C (T TrF) (N"V @' Ty @) <(H;T) d JTn)

+¢ (N T e Jred v ®) (( “;T> F JTn> +EnTA (T7'F'JrF) (N*wf/QT”i"JNs’JTn)

NI-¥s

VT

+ ((?) w’JTF) (N~ 7719 T e’ Trn) + Ent A (N_lT_s/QF/JTfEJNgJTTI)

—  NT¥s N
+oNT JT JT
+ A (T Irf) (N R TNDy) (( ) g JTn)

)

+ Ay (T f'Trg) (N~ @, Tn&®y) ((“NT> 7
Pg—1
+ %Af <T71/2f/JTg> (N*%(I);JN@Q) <( ; )g JTT]>

=0,(1).

1=y
(N*IT*I/Qw'JTeJNeJTn) FENr ¢ (N 172 ’JTEJNEJTn)
T

ENT 1 N1=¥s . . .
< — and ——=— = O(1), the final equality comes from rates derived in Lemma 2, 6,

T = VT VT

employing the fact that ¢ has finitely many non-zero entries by Assumption 9. IV = O,(1) can be

Since

deduced similarly and this concludes the proof.

ve+ klog N

Theorem 5 Let the regularization parameter in Stage-2 Pass 1 regression be given by \ := 2————
ENT

¢ > 0 and k is defined in assumption 10 . Then, if Assumptions 1-10 hold, w.p at least 1—exp [—i] +o(1),

we have,
Viog N
Hs'y—s’yHQ =0, ( .
ENT
Proof: First stage regression gives initial forecast y, = 7y + JTFB. Let w = (G14p,-- - ,f&m_h)/ denote

the vector of stacked residuals from the first stage regression. 4 =y — g, =y —try — JTFB. The
second stage involves the Lasso regression of & on &, where both w and & are generated regressors ,i.e.,

~ is estimated by the following penalized regression,

A= argngn{|| @ —&v(3/T + Al }-
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The lasso solution must satisfy

I e —&513/T + AMAlh < || @ —evl3/T + Al (A4.2)

Since 1) = @ — év( Defined in Lemma 9), Equation A4.2 can be written as,

(—ey—n) (4—Ey+mn)

+ A = Ayl <0.

Substituting values of 17 and u, this simplifies to

(¥ =) (=& (3 — ) + 2)
T

+ A = Al < 0.

This gives the “Basic Inequality” for Lasso. See Biithlmann & Van De Geer [2011] (Page 103)

A N

e (& =llz /T +AlIFll < 2 (5 = %) ER/T + Al -

Note that,

Al ~ ~
=&l < (ma, 2lefal) 19 =l

Next, we show that for an appropriate choice \g the set

has a high probability.

log N
Let \g := Ct@, From Assumption 10,
=NT
2 é/-N 1 N
P(ﬂ)_ﬂ”<max i <\/c—&;f$70g>
1N T =
E]\/vT Al ~
P(lg‘?{]\, T 2|éhn| > C+HlOgN)
N
> 1= max 22> o Rig N
1<G<N ﬁ = g
2|€-’77|
= P((éﬁ%v VT +10,(1)] > e+ klog N
- log N
= 1NeXp{ (et rlog )} +o(1)
K
—c
=+ — 1
(eXP( p > + o ))
ENT 1

The third inequality follows from the fact that the fourth inequality comes from Lemma

<77
T =T



10 and the final inequality is by Assumption 10. By making ¢ arbitrarily large, the probability can be

made arbitrarily small.

We have on 7, with A\ = 2],

€ & =)l . .
21 el < 3M A, — vl - (A13)
Proof: See Lemma 6.3, page 105 , Bithlmann & Van De Geer [2011].

Define A; := &'¢/T. Given that the set of ‘relevant’ idiosyncratic terms S has a fixed cardinality, it
is easy to show that if the comparability condition for set S, holds w.r.t A, , (defined in Assumption
10(c)) it implies that the compatibility condition also holds for set S w.r.t Ae.

Proof: Through similar steps as in Lemma 10, we can show that

1 i+ Jrg®iy) (€ + Jrg®;
max | = | £;&; = max (&i + Jrg®ig) (&5 + Jrg®)q) + 0,(1). (A4.4)
©j T ij T
Hence,
max AY = max AY + o,(1). (A4.5)
ij ij
Compatibility condition for set S w.r.t A. ; implies, for all N x 1 vectors © satisfying |@s:|; < 3||®g]l;,
we have,
1©sl} < (©'A.4©) |5]/14,
which equivalently can be stated as,
(0'A.,0) S|
1©s3 3
Therefore we have,
!/
(0'A:4©) |5|
||®s||f V3
ij
H@ ||1
0,0; y 0,0;
C, LAY + maxC, (AY, — AY -~
§;|@ﬂﬁ( ) g )§:H®sm
<C, AJ +0,(1)0O(1)
Z H@s||1 ( )
0.0; g
C, Yy (Ag) +0,(1). (A4.6)

2
1©slly

2]
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S 0,0, . .
The second last line follows from A4.5. C, = | 2| is a constant. }, ; e HJQ is bounded since we need to
Yy ’ Sl

look at only those vectors which satisfy |[@g¢|; < 3||®g]||,. Therefore, compatibility condition for the

S w.r.t A, 4 implies that compatibility condition for the S holds w.r.t A; with probability approaching
one.

Using equation A4.3 and Assumption 10(b), A4.6, we have, on .7, with probability approaching one, for
A =2\,

& (3 =I5 /T + A& = Il < 4X71S]/%3.- (A4.7)

Proof:
A fA 2 A A fA 2 A~ ~
2 =M /THAY =7l =211 F =2 /T + A Ys = Yslly + A 17

1

< AN Fs = sl
< VISTIE G =Dl / (VTwo)
<[l (& =M)l3 /T +47%5] /.
where we have used equation A4.3 in the first inequality and the compatibility condition (Assumption
10) is used in the second inequality.'’ The Last inequality uses that fact that for any u, v, 4uv < u?+40v2.

Concluding from the discussion above, we have that, Using the regularization parameter A = 2\, on the

set 7, w.p approaching one, we have

& (% = )ll5 /T < 4X°|S|/wg

= Op()‘2)

N
=0, (i‘)g2> . (A4.8)
—=NT

The final equality uses the fact that |S| is finite. Finally, using triangle inequality we have,

1. ... . 1. .
=65 —enlly < 2 165 — &lly + 2 1€ — €0) vl

1 -
< 7 187 =&l + 0y (E37)

Viog N _
Op( + 0, ( 1)

= =NT
=ENT

o, (V).

—_

SNT

We have used triangle inequality in first step and Lemma 9 in the second step, noting that for j € {i|v; #
0}, ¢;, = 0 by Assumption 1. The third step invokes equation A4.8.

Corollary 5.1 follows directly using triangle inequality combining Theorem 5 and 1 (b).

1In the compatibility condition we have used ® = 4 — ~ since 4 — ~ satisfies the condition ||§5c — vzl = [[Fsell; <
3 ”:Ys - 75”1 by A4.3
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This Online Appendix B provides additional simulation results not included in the main paper.
To differentiate the sections of the Online Appendix from those in the main paper, we refer to this
as Online Appendix B and label the sections accordingly, as Section B1 and Section B2. Section Bl
presents additional simulation results that complement the subset of results included in the main paper.
Specifically, this section provides tables comparing the relative performance of the five competing methods
discussed in Section 5 of the main paper, under various sample sizes and factor strength combinations,
which were not included in the main paper, using out-of-sample R? as the evaluation metric. Section
B2 focuses on the true and false positive rates from Stage 2 of PCR, LASSO and 3PRF LASSO. It also

discusses the underlying reasons behind the findings presented in the corresponding tables.

B1 Additional Simulation Results

This section presents out-of-sample R? comparisons across various competing methods, supplementing

the results provided in the main paper.



Table B1: OOS R-squared across competing methods

pr | pg | a | d|| Oracle PCR 3PRF | LASSO | PCR+L | 3PRF+L

0 0 0 | 0| 0.61433 | 0.35654 | 0.38186 | 0.45527 | 0.3915 | 0.47442

03109103 0] 0.61414 | 0.35542 | 0.39428 | 0.47707 | 0.27148 | 0.47751

03109103 1] 0.64643 | 0.35486 | 0.40873 | 0.53051 | 0.45829 | 0.54032

0310910910/ 061432 | 0.35158 | 0.38538 | 0.46182 | 0.2961 | 0.47037

03109109 1] 065035 | 0.37578 | 0.41963 | 0.53049 | 0.45851 | 0.54596

0910310301 061625 | 0.3904 | 0.42398 | 0.48664 | 0.35929 | 0.50052

091031 03| 1] 0.64961 | 0.37989 | 0.44089 | 0.54063 | 0.48933 | 0.55786

09103109 0] 062509 | 0.41418 | 0.43371 | 0.51096 | 0.33858 | 0.51809

09103109 | 1] 064712 | 0.39347 | 0.461 | 0.54584 | 0.55782 | 0.56922

Notes: K¢, Kq , pr pg, a , d Y5, Vg are defined in Section Section 5 of the main paper. Oracle denotes
the infeasible regression, as described in Section 5 of the main paper. PCR denotes the regression of y
on first ‘K’ principal components, where K = Ky + K,. 8PRF denotes the auto-procry 3PRF with K;
auto-proxies. LASSO denotes the the LASSO regression of y on X. 8PRF+L is SPRF LASSO procedure
where Stage 1 (3PRF) uses Kj proxzies. PCR+L is analogously a 2 Stage regression where Stage 1 is
PCR involving leading K = Ky + K, PCs as predictors, and Stage 2 is a LASSO regression involving
the idiosyncratic components estimated using principal component method. The highest R? value across

competing methods in in bold.



Table B2: OOS R-squared across competing methods

K;=1,K,=5

N =100, T = 100

Yy =079, =1

pr | pg | a | d| Oracle PCR 3PRF LASSO PCR+L | 3PRF+L
0 0 0 | 0] 0.62037 | 0.19857 0.026841 | 0.35477 0.34726 0.36007
03109 103| 0| 062109 0.13947 | -0.051284 | 0.30176 0.2065 0.28183
03109103 1] 064536 | -0.012249 | 0.058237 | 0.24102 | 0.037048 0.12446
03109109 ]0] 061872 0.10201 -0.027638 | 0.29411 0.14278 0.29521
03109109 | 1] 064162 | -0.0055797 | 0.050517 | 0.23895 | -0.0015838 | 0.15191
09]03]03| 0] 061673 0.22198 0.021928 | 0.35361 0.2861 0.37247
09]103]03 |1 0.648 0.032885 | 0.070533 0.245 0.052431 0.18859
09103]09|0| 06124 0.14714 | -0.001615 | 0.3306 0.28203 0.34898
09031]09 |1/ 0.64875 | 0.033361 | 0.086025 | 0.26294 0.1633 0.20486
Notes: See Table B1
Table B3: OOS R-squared across competing methods
Ki=1 K;=5 N =100, T'= 100 Yy =079, =0.7

pr | pg | a | d|l Oracle PCR 3PRF | LASSO | PCR+L | 3PRF+L

0 0 0 | 0] 0.61463 | 0.28231 | 0.32482 | 0.33067 | 0.36956 | 0.36339

031091030/ 06106 | 0.26877 | 0.31604 | 0.32014 | 0.19992 | 0.35601

03109103 ] 1] 064346 | 0.044112 | 0.2123 | 0.26564 | 0.14649 0.21404

03109109 |0 | 062283 | 0.25992 | 0.31492 | 0.3206 0.29171 | 0.35449

03109109 |1| 065094 | 0.056318 | 0.2326 | 0.29303 | 0.20639 | 0.23536

0903]03|0| 062236 | 0.31688 | 0.35418 | 0.35792 | 0.29901 | 0.39243

09031031/ 0.64945 | 0.066358 | 0.22229 | 0.27882 | 0.13716 | 0.22685

09103]09|0 0.616 0.27749 | 0.34104 | 0.33787 | 0.24626 | 0.37674

09]03]09 |1/ 064735 | 0.065195 | 0.21686 | 0.27765 | 0.086635 | 0.21927

Notes: See Table B1



Table B4: OOS R-squared across competing methods

Ki=1 K;=4 N =200, T =100 Yr=119, =07

pr | pg | a | d| Oracle PCR 3PRF LASSO | PCR+L | 3PRF+L

0 0 0 | 0] 0.61498 | 0.36532 | 0.38259 | 0.43896 | 0.18138 | 0.43232

0.31091]03]|0| 061133 | 0.35176 | 0.37822 | 0.40992 | 0.17245 | 0.4226

031091031 0.64515 | 0.35478 | 0.39234 | 0.51018 | 0.33696 | 0.5313

0.3 109109 0] 062544 | 0.38001 | 0.39697 | 0.44561 | 0.20357 | 0.4632

03109109 | 1] 064217 | 0.3485 | 0.39073 | 0.51056 | 0.43126 | 0.54387

09]031]03]|0| 0.62297 | 0.40048 | 0.4211 | 0.47033 | 0.27172 | 0.49019

0903|031/ 0.64624 | 0.38234 | 0.42102 | 0.53193 | 0.46556 | 0.55824

09031]09 |0 | 061829 | 0.41585 | 0.43229 | 0.48002 | 0.26581 | 0.48259

0903]09|1]| 06423 | 0.39127 | 0.42465 | 0.54416 | 0.41208 | 0.56292

Notes: See Table B1
Table B5: OOS R-squared across competing methods
Ki=1 K;=4 N =200, T'= 100 Yr=0719,=1

pf | pg | a | d|l Oracle PCR 3PRF LASSO | PCR+L | 3PRF+L
0 0 0 | 0] 0.61466 0.256 -0.035535 | 0.31675 0.12319 | 0.33108
03109103 0] 061903 0.20892 -0.081435 | 0.27765 0.15013 0.2842
031]09]03]| 1] 0.6482 | -0.035068 | -0.039213 | 0.21907 | -0.1494 | 0.083494
03109 1]09]| 0] 061784 | 0.053703 | -0.063199 | 0.27743 | 0.023651 | 0.28428
03109109 1] 064377 | -0.038441 | -0.03367 | 0.18877 | -0.21727 | 0.080604
091]03]03]|0]| 061121 0.27614 | -0.032991 | 0.30132 0.18472 | 0.30588
091]03]03]| 1]l 064674 | -0.0084072 | 0.014111 | 0.23572 | -0.061222 | 0.1673
091]031]09]| 0] 061696 | 0.074444 | -0.038879 | 0.28889 | 0.066584 | 0.29957
091]03]09]| 1] 064142 | -0.016026 | -0.007846 | 0.22247 | -0.088668 | 0.14458

Notes: See Table B1




Table B6: OOS R-squared across competing methods

Ky=1,K,=4

N =200, T = 100

Gr = 0.7, 1, = 0.7

pr | pg | a | d| Oracle PCR 3PRF LASSO | PCR+L | 3PRF+L
0 0 0 | 0] 061932 | 0.29616 | 0.33059 0.2822 0.084354 0.358
031091030 062197 | 0.2721 0.30555 | 0.26825 | 0.087587 | 0.3303
0309103 1] 063937 | 0.026776 | 0.18495 | 0.23898 | -0.11175 | 0.18665
031091090 | 062036 | 0.28196 | 0.33343 | 0.28699 0.15235 | 0.35928
03109109 |1]| 064494 | 0.032535 | 0.18034 | 0.2462 | -0.047994 | 0.17535
09]031]03|0| 062134 | 0.3175 | 0.34674 | 0.30281 0.16036 0.36426
09]031]03]|1]| 064952 | 0.028643 | 0.1712 | 0.22498 | -0.03956 0.1736
09]03]09 |0 061556 | 0.25131 | 0.33095 | 0.29357 0.14332 | 0.36324
09]031]09|1] 064354 | 0.038888 | 0.17337 | 0.2202 | -0.035252 | 0.1693
Notes: See Table B1
Table B7: OOS R-squared across competing methods
K;=1 K;=5 N =200, T'= 100 Yr=1,19y=1
pf | pg | a | d|l Oracle PCR 3PRF | LASSO | PCR+L | 3PRF+L
0 0 0 | 0] 0.61232 | 0.34269 | 0.34306 | 0.47326 | 0.17836 | 0.47401
031091030 | 061902 | 0.32445 | 0.34489 | 0.46046 | 0.11375 | 0.4729
031091031 0.64792 | 0.27878 | 0.35103 | 0.50075 0.25 0.49988
03109109 |0 | 061772 | 0.2981 | 0.33473 | 0.43848 | 0.10742 | 0.44164
03109109 | 1| 065412 | 0.27411 | 0.34088 | 0.50125 | 0.2229 0.5055
0903]03|0| 061779 | 0.38476 | 0.3519 | 0.50613 | 0.2393 | 0.50928
0903]03|1]| 0.65111 | 0.3498 | 0.38443 | 0.54452 | 0.30552 | 0.53811
091031090 | 061669 | 0.39008 | 0.37169 | 0.51254 | 0.2184 | 0.52195
0903]09 | 1| 064782 | 0.34857 | 0.37524 | 0.52551 | 0.27174 | 0.53914

Notes: See Table B1




Table B8: OOS R-squared across competing methods

Ki;=1,K;,=5 N =200, T =100 Yr=119, =07

pr | pg | a | d | Oracle PCR 3PRF | LASSO | PCR+L | 3PRF+L

0 0 0 | 0] 061789 | 0.36388 | 0.38592 | 0.458 0.1288 0.44501

03109 03| 0| 062315 | 0.35902 | 0.38808 | 0.4257 | 0.044106 | 0.44389

031091031/ 065796 | 0.35416 | 0.38523 | 0.522 0.33721 | 0.54784

03109109 |0] 062192 | 0.35621 | 0.38754 | 0.44026 | 0.11799 | 0.45313

0310909 |1]| 064294 | 0.35197 | 0.38737 | 0.51126 | 0.27666 | 0.53157

091031030 | 062255 | 0.39693 | 0.41862 | 0.47485 | 0.17845 | 0.48809

091031031 064586 | 0.39599 | 0.42979 | 0.54785 | 0.29334 | 0.56195

091]03]09 |0 | 061844 | 0.40113 | 0.4199 | 0.47259 | 0.16775 | 0.48125

091]03]09 1] 064592 | 0.38784 | 0.42082 | 0.52967 | 0.32144 | 0.56054

Notes: See Table B1
Table B9: OOS R-squared across competing methods
Ki=1 K;=5 N =200, T'= 100 Y =079, =1

pr | pg | a | d|l Oracle PCR 3PRF LASSO | PCR+L | 3PRF+L
0 0 0 | 0] 061796 | 0.23766 | -0.026162 | 0.33525 | 0.077958 | 0.33206
031091030 061721 | 0.18744 | -0.092737 | 0.2527 | -0.060807 | 0.22985
031091031/ 064559 | -0.05868 | -0.052926 | 0.23097 | -0.24908 | 0.099657
03091]09|0| 061714 | 0.03491 | -0.066592 | 0.28017 | -0.10609 0.2757
0309109 |1| 064026 | -0.063361 | -0.064163 | 0.20779 | -0.37883 | 0.06832
09031030 062311 | 0.24301 | -0.043626 | 0.29953 0.13248 | 0.31705
09]03]03|1]| 06509 |-0.022621 | -0.027238 | 0.20286 | -0.35656 0.1386
0903109 |0 | 061487 | 0.090852 | -0.042113 | 0.28535 | -0.026682 0.29
0903]09|1| 064767 | -0.018289 | -0.010301 | 0.21049 | -0.19715 | 0.13257

Notes: See Table B1




Table B10: OOS R-squared across competing methods

Ki=1K,=5 N =200, T = 100 Gr = 0.7, 1, = 0.7

pr | pg | a | d| Oracle PCR 3PRF | LASSO PCR+L | 3PRF+L

0 0 0 | 0| 0.6125 | 0.27678 | 0.30781 | 0.27376 | -0.0011527 | 0.32832

0.3]091]03]|0] 062594 | 0.27481 | 0.31113 | 0.26177 | 0.00020184 | 0.32603

03109103 1] 065078 | 0.026135 | 0.17729 | 0.20819 | -0.23875 0.17715

03109109 0] 062005 | 0.28532 | 0.31292 | 0.28765 0.013709 0.33589

03(09]09 |1 0.6534 | 0.026949 | 0.16915 | 0.22503 -0.20486 0.17025

091]031]03]| 0] 062205 | 0.32133 | 0.35368 | 0.3181 0.12265 0.38098

091]03]03| 1] 064725 | 0.040913 | 0.186 | 0.23547 | -0.20607 0.18435

091]03]09|0] 06152 | 0.24852 | 0.32215 | 0.29525 0.053405 0.34675

091]03]09 1] 064766 | 0.042193 | 0.17478 | 0.21628 -0.22745 0.17648

Notes: See Table B1

B2 TPR/FPR in 3PRF LASSO compared to PCR LASSO

In this section, we provide the true and false positive rates of Stage 2 of 3PRF LASSO and compare them
with the corresponding rates of Stage 2 of PCR LASSO. The results are reported in Tables B11-B14.

As observed in the simulation results included in the main paper and in Section B1, 3PRF LASSO
exhibits superior performance compared to PCR LASSO in the majority of cases. This divergence in
performance becomes more pronounced when the number of predictors exceeds the sample size, i.e., when
the training sample size T = 100 is half of the cross-sectional size N = 200, compared to the case when
they are identical. The improved performance of 3SPRF LASSO can be attributed to the substantially
higher false positive rates observed in PCR LASSO, as shown in Tables B11-B14.

It is noteworthy that, regarding the estimation of ‘relevant’ idiosyncratic elements, 3PRF LASSO
and PCR LASSO yield very similar results.! However, for ‘irrelevant’ idiosyncratic elements, i.e., {&; |
~v; = 0}, the estimates from our procedure differ significantly from those in the PCR setup. For PCR, it
is known that é&5,°R — ¢;, = 0,(1), as shown in Proposition 5 of Bai & Ng [2023]. For the 3PRF LASSO

procedure, Lemma 9 in the main Appendix shows that
é;}tPRF - (5it + ¢;g (gt - g)) = Op(EJ_VlT)v

where, according to Assumption 1, for ‘relevant’ idiosyncratic elements, ¢;, = 0, leading to a result

I These results are not explicitly reported in the simulations but can be verified by regressing the estimated ‘relevant’
idiosyncratic elements from PCR and Stage 2 of 3PRF LASSO on each other and calculating the R2. In most cases, the
R? was found to be very close to 1.



analogous to PCR: Vi € S, &3PRF — ¢, = O,(Eyy) = 0p(1). However, for ‘irrelevant’ idiosyncratic
elements, Lemma 9 in the main Appendix indicates that the convergent limit of &3FRF differs from
égCR. The estimator of idiosyncratic elements in our setup is not consistent for ‘irrelevant’ idiosyncratic
elements. However, this inconsistency is not detrimental since these predictors have zero coeflicients.
Our setup inherently leads to a situation where the estimated values of ‘relevant’ idiosyncratic ele-
ments are either orthogonal or weakly correlated, while the estimated values of ‘irrelevant’ idiosyncratic
elements are highly correlated due to the presence of irrelevant factors. As noted in Zou & Hastie [2005]
and Wang et al. [2011], “When the model includes several highly correlated variables, all of which are
related to some extent to the response variable, LASSO tends to pick only one or a few of them and
shrink the rest to zero.” This implies that high correlation dampens the cardinality of the set of non-zero
coefficients in LASSO. When this high correlation occurs between the relevant and irrelevant predictors
(as in Fan et al. [2020]) or among relevant predictors, it is an undesirable feature. However, when the
correlation is high only among the irrelevant predictors, it suppresses false positive rates, making it a
desirable feature. This rationalizes the results in Tables B11-B14, where we observe higher false positive
rates in Stage 2 of the PCR LASSO procedure compared to 3SPRF LASSO. To corroborate these findings,
we conducted an additional experiment. We generate i.i.d vectors ; € R'%%, for ¢t = 1,...,100, from
a multivariate normal distribution. For each ¢, the first five elements of x; are uncorrelated, while the
remaining elements have a covariance matrix with diagonal entries equal to 1 and off-diagonal entries

equal to p. We then generate 100 values of the target variable y using the model

5

Yer1 = Y Bai + e,

i=1

where u¢1q is drawn from the N(0,2) distribution and is serially uncorrelated. We vary the signal
strength () and the correlation among irrelevant predictors (p). The experiment is repeated 100 times,
and we record the average false and true positive rates. The results are provided in Table B15 of this
Online Appendix. Our results show that the false positive rate tends to decrease as p increases, regardless
of the signal level 5. While this relationship is not strictly monotonic, it appears to be approximately
so. The true positive rate remains high across p, even at lower signal levels.

Thus, the correlation among irrelevant predictors appears to be beneficial, as it suppresses spurious
selections. This also explains the improved performance of 3PRF LASSO compared to PCR LASSO

when the number of irrelevant factors increases from four to five.



In tables B11 -B14, we list parameter configurations (py, pg, a, d) as one entry to save space.

configurations are in the columns 7, in exactly the same order as tables B1-B10.

Table B11: TPR/FPR in stage-2 of 3PRF-Lasso.

These

True and False Positive rates 3PRF-Lasso, N = 100, T'= 100, Ky =4

vr=1,19s=1 Yr=1,93=07 | Yy =07,9,=1| 9y =0.7, 9, =0.7
() TPR FPR TPR FPR TPR FPR TPR FPR
1 0.9525 | 0.12469 | 0.8525 | 0.15531 | 0.8275 | 0.21594 | 0.5575 | 0.066979
2 0.95 0.11115 0.84 0.1451 0.835 | 0.20438 | 0.6425 | 0.078958
3 0.7225 | 0.086667 | 0.6725 | 0.063021 | 0.2125 | 0.11021 | 0.0225 | 0.018229
4 0.935 | 0.12458 | 0.9125 | 0.14323 | 0.865 | 0.21979 | 0.56 0.085625
5 0.6875 | 0.096354 | 0.695 | 0.056667 | 0.23 | 0.12677 | 0.02 0.023125
6 0.9425 | 0.1474 | 0.9175 | 0.14385 | 0.8675 | 0.20729 | 0.5575 | 0.080312
7 0.6375 | 0.082083 | 0.6625 | 0.053542 | 0.255 | 0.13333 | 0.0175 | 0.014375
8 0.9475 | 0.13365 0.83 0.14479 | 0.8525 | 0.21125 | 0.5525 | 0.084896
9 0.6725 | 0.092188 | 0.63 | 0.049375 | 0.23 | 0.12073 | 0.0175 | 0.011979

True and False Positive rates 3PRF-Lasso, N = 100, T'= 100, Ky =5
1 0.94 0.12844 | 0.8375 | 0.13594 0.85 0.2226 | 0.555 | 0.076354
2 0.935 | 0.13562 | 0.865 | 0.13448 | 0.8625 | 0.22812 | 0.63 0.10385
3 0.69 | 0.087292 | 0.725 | 0.073021 | 0.235 | 0.15323 | 0.0225 | 0.024375
4 0.925 | 0.13052 | 0.825 | 0.12062 | 0.845 | 0.22583 | 0.5325 | 0.068646
5 0.7175 | 0.091354 | 0.6975 | 0.067604 | 0.2225 | 0.14802 | 0.0025 | 0.014896
6 0.95 0.13552 | 0.8275 | 0.12771 0.89 | 0.22073 | 0.5575 | 0.074167
7 0.67 | 0.091146 | 0.6375 | 0.050521 | 0.29 | 0.13542 | 0.0225 | 0.014479
8 0.925 | 0.12927 | 0.845 | 0.13719 | 0.9025 | 0.23479 | 0.5675 | 0.070104
9 0.65 | 0.082917 | 0.6625 | 0.060729 | 0.275 | 0.13396 | 0.0125 | 0.0098958

Notes: TPR — izt H(’A“(SZRF) 20and 2 £0) ppp - Tim H(Al‘(gleRF) 20 md % =0) e T de-
>iz11(yi #0) > i1 l(yi =0)

notes the indicator function, and 4

;}/(SPRF)

(

)

, which is estimated in Stage 2 of 3PRF-Lasso procedure.

SPRE) denotes the it component of the estimated parameter vector



Table B12: TPR/FPR in stage-2 of 3PRF-Lasso.

True and False Positive Rates for 3PRF-Lasso, N = 200, T'= 100, Ky = 4

Yr=119s=1 Yr=1,%=07 | =07 9%,=1 | ¢y =0.7, ¢y =0.7
TPR FPR TPR FPR TPR FPR TPR FPR
0.9325 | 0.089031 | 0.7775 | 0.11265 | 0.905 | 0.15934 | 0.515 | 0.050714
0.9375 | 0.10689 | 0.8325 | 0.10454 | 0.8975 | 0.16347 | 0.5825 | 0.062755
0.71 | 0.056327 | 0.735 | 0.068776 | 0.3025 | 0.095816 | 0.015 | 0.0044388
0.9225 | 0.081735 | 0.7675 | 0.089643 | 0.86 0.17245 0.56 0.058163
0.7175 | 0.061276 | 0.7275 | 0.043112 | 0.275 | 0.11719 | 0.0175 | 0.011327
0.92 | 0.084796 | 0.7875 | 0.08301 0.86 0.18173 0.48 0.057347
0.71 | 0.054541 | 0.66 | 0.043929 | 0.35 0.10985 0.02 | 0.0063265
0.935 | 0.092143 | 0.7725 | 0.1077 | 0.8675 | 0.16168 | 0.505 | 0.058061
0.745 | 0.060561 | 0.62 | 0.039184 | 0.345 | 0.11214 | 0.0275 | 0.011939
True and False Positive Rates for 3SPRF-Lasso, N = 200, T'= 100, Ky =5
0.8925 | 0.083878 | 0.795 | 0.10786 0.9 0.17954 0.5 0.054184
0.95 | 0.093418 | 0.8125 | 0.10413 | 0.915 | 0.17781 0.61 0.082653
0.7275 | 0.061939 0.7 0.042908 | 0.365 | 0.099643 | 0.0175 0.01
0.91 | 0.092959 | 0.845 | 0.10388 | 0.9175 | 0.15628 | 0.545 0.07449
0.74 | 0.064184 | 0.71 | 0.050765 | 0.375 | 0.10235 | 0.015 | 0.004949
0.925 | 0.081071 | 0.7925 | 0.090102 | 0.9075 | 0.16821 | 0.465 | 0.046276
0.705 | 0.069031 | 0.6475 | 0.044694 | 0.3925 | 0.12133 | 0.0175 | 0.0086735
0.925 | 0.080459 | 0.7275 | 0.081888 | 0.9225 | 0.18071 | 0.5075 | 0.066071
0.71 | 0.062806 | 0.71 | 0.050867 | 0.365 | 0.11194 0.03 0.010561

Notes: See Table B11.
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Table B13: TPR/FPR in PCR-Lasso (Regressing y — Yper ON idiosyncratic components generated after
extracting PC-factors from X).

True and False Positive rates PCR-Lasso, N = 100, T' = 100, Ky = 4

Yr=1vg=1 | =119, =07 | Yy =07, 19, =1 | ¢y =0.7, 1y = 0.7
TPR FPR TPR FPR TPR FPR TPR FPR

1 0.96 | 0.13781 | 0.8775 | 0.17833 | 0.915 | 0.14229 | 0.9075 | 0.16073

2 0.97 | 0.12781 | 0.8725 | 0.19115 | 0.8775 | 0.15354 | 0.895 0.16354

3 0.8175 | 0.11771 | 0.7125 | 0.13062 | 0.6075 | 0.24583 | 0.645 0.28094

4 0.975 | 0.14615 | 0.915 | 0.19042 | 0.9025 | 0.15875 | 0.905 0.19573

5 0.7725 | 0.10135 | 0.7625 | 0.11125 | 0.655 | 0.29125 | 0.625 0.26146

6 0.975 | 0.19656 | 0.93 | 0.16646 | 0.9225 | 0.16521 | 0.9325 0.2101

7 0.78 | 0.10833 | 0.7475 | 0.1326 0.69 0.24073 | 0.6475 | 0.26531

8 0.97 | 0.14365 | 0.8925 | 0.19625 | 0.9125 | 0.19437 | 0.9025 | 0.23729

9 0.7925 | 0.1126 | 0.7475 | 0.11802 | 0.6675 | 0.2625 0.67 0.27

True and False Positive rates PCR-Lasso, N =100, T'= 100, Ky =5

1 0.9575 | 0.14448 | 0.9125 | 0.20917 | 0.835 | 0.14302 0.88 0.17604

2 0.96 | 0.14708 | 0.895 | 0.20833 | 0.8575 | 0.18458 | 0.92 0.25427

3 0.7775 | 0.12969 | 0.795 | 0.15771 | 0.6575 | 0.30167 | 0.6425 | 0.30875

4 0.9825 | 0.20448 | 0.885 | 0.19937 | 0.8575 | 0.21531 | 0.8975 | 0.19687

5 0.82 | 0.12562 | 0.7525 | 0.1575 | 0.6525 | 0.31875 | 0.665 0.295

6 0.965 | 0.17135 0.9 0.22396 | 0.865 | 0.19437 | 0.915 0.20031

7 0.8125 | 0.1124 | 0.745 | 0.14198 | 0.6325 | 0.26865 | 0.6425 | 0.30135

8 0.985 0.1724 | 0.9125 | 0.24854 | 0.9025 | 0.20469 0.91 0.23281

9 0.7925 | 0.10219 | 0.7475 | 0.11573 | 0.665 | 0.2425 0.69 0.27469

Zil ]I(’Ayi(PCR) #0 and v; = 0)

Notes: TPR =

N ’ - N
> im1 I(vi #0) iz 1y =0)

notes the indicator function, and 'Ayz-(PCR) denotes the it component of the estimated parameter vector

, where 1 de-

4 PCR) which is estimated in Stage 2 of PCR-Lasso.
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Table B14: TPR/FPR in PCR-Lasso (Regressing y — Yper ON idiosyncratic components generated after
extracting PC-factors from X).

True and False Positive rates PCR-Lasso, N = 200, T' = 100, Ky = 4

Yr=1vg=1 | =119, =07 | Yy =07, 19, =1 | ¢y =0.7, 1y = 0.7
TPR FPR TPR FPR TPR FPR TPR FPR

1 0.97 | 0.26026 | 0.8625 | 0.31388 | 0.9675 | 0.27046 | 0.8825 | 0.31969

2 0.9675 | 0.23133 | 0.88 | 0.28827 | 0.9375 | 0.25046 | 0.9175 | 0.30638

3 0.79 | 0.12857 | 0.7625 | 0.17735 | 0.6775 | 0.26648 | 0.675 0.29128

4 0.9475 | 0.2374 0.85 0.2799 0.935 | 0.30592 0.9 0.28092

5 0.7975 | 0.145 | 0.7525 | 0.12796 | 0.6625 | 0.27694 | 0.62 0.26066

6 0.94 | 0.24133 | 0.87 | 0.25929 | 0.915 | 0.23464 | 0.88 0.29352

7 0.7825 | 0.16286 | 0.7525 | 0.12474 0.67 0.24821 | 0.6475 | 0.23612

8 0.9725 | 0.23031 | 0.8525 | 0.29311 | 0.945 | 0.31179 | 0.8775 | 0.30327

9 0.7825 | 0.10597 | 0.7275 | 0.15577 0.7 0.25342 | 0.6475 | 0.24337

True and False Positive rates PCR-Lasso, N = 200, T'= 100, Ky =5

1 0.9575 | 0.30066 | 0.905 | 0.33051 | 0.925 | 0.32235 | 0.905 0.36862

2 0.9775 | 0.31816 | 0.92 | 0.37832 | 0.9125 | 0.33138 | 0.9175 | 0.37158

3 0.7925 | 0.19582 | 0.7425 | 0.16959 | 0.6325 | 0.29847 | 0.65 0.30964

4 0.95 | 0.31031 0.92 0.345 0.965 0.3702 0.9 0.36658

5 0.815 | 0.22367 | 0.725 | 0.19056 | 0.6975 | 0.3049 0.67 0.29638

6 0.9575 | 0.29653 | 0.8775 | 0.33378 | 0.9425 | 0.29087 | 0.925 0.35163

7 0.795 | 0.19801 | 0.7375 | 0.21689 | 0.7025 | 0.3576 0.65 0.33383

8 0.96 | 0.31133 | 0.88 0.35357 | 0.9225 | 0.35337 | 0.8825 | 0.34301

9 0.78 | 0.20082 | 0.7475 | 0.20577 0.7 0.29077 | 0.6625 | 0.32046

Notes: See Table B135.
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